Hohle Glasfasern für UV-Licht

Mikroskopische Aufnahme einer Hohlkernfaser (Abbildung: MPL)

Wer Licht in Glasfasern auf die Reise schicken will, und zwar möglichst verlustfrei, nimmt am besten Infrarotlicht, so wie es etwa bei den weltweiten Telekommunikationsnetzwerken der Fall ist. Aber für bestimmte Anwendungen, etwa für spektroskopische Untersuchungen an Ionen oder Atomen, braucht man (Laser-)Licht im ultravioletten Spektralbereich, das jedoch herkömmliche Glasfasern schnell zerstört.

Nun haben Forscher des Max-Planck-Instituts für die Physik des Lichts (MPL) in Erlangen und des QUEST-Instituts in der Physikalisch-Technischen Bundesanstalt (PTB) eine neue Sorte von Glasfasern mit einem hohlen Kern erprobt und festgestellt:

Diese Fasern leiten UV-Laserlicht zerstörungsfrei und mit akzeptablen Verlusten. Ihre Untersuchungen, über die sie jüngst in der Zeitschrift Optics Express berichteten, sind für viele Anwendungen interessant:

Neben der Präzisionsspektroskopie an Atomen oder Ionen und dem Einsatz in optischen Atomuhren und Quantencomputern sind das etwa die Fluoreszenzmikroskopie in der Biologie, die Untersuchung von Prozessplasmen, Verbrennungsstudien an Ruß oder die Spektroskopie von Treibhausgasen.

Bisherige Glasfasern besitzen einen festen Glas-Kern. Er ist eingehüllt in einen Mantel aus einem optisch dünneren Material. Die Gesetze der Physik sorgen dafür, dass ein Lichtstrahl über Totalreflexion in einer solchen Faser festgehalten wird und ohne wesentliche Verluste über große Strecken transportiert werden kann.

Daher werden solche Glasfasern weltweit breit eingesetzt, um Licht der verschiedenen spektralen Bereiche zu transportieren: vom Infrarot- bis hin zum sichtbaren Licht. Aber kurzwelligeres UV-Licht wird von den meisten für solche Fasern verwendeten Glassorten stark absorbiert, und es zerstört die Fasern schnell.

Im Max-Planck-Institut für die Physik des Lichts in Erlangen experimentiert man schon seit einigen Jahren mit anderen Glasfaser-Sorten. Jetzt hat sich gezeigt, dass eine bestimmte Bauart besonders gut für UV-Licht geeignet ist: eine mikrostrukturierte photonische Kristallfaser (PCF) mit einer sogenannten Kagomé-Struktur (einem speziellen Muster aus regelmäßig angeordneten Drei- und Sechsecken) und einem hohlen Kern von 20 μm Durchmesser.

Durch diesen Kern wird das Licht einmodig – d. h. mit einer räumlichen Intensitätsverteilung, die der Form einer Gauß’schen Glockenkurve ähnelt – geleitet. Die entscheidende Frage, ob das wirklich einmodig und zerstörungsfrei geschieht, sollten die Messtechnik-Experten vom QUEST-Institut in der PTB beantworten. Ihr Ergebnis: Bei dem verwendeten UV-Strahl mit einer Wellenlänge von 280 nm war ein einmodiges Transmissionsverhalten festzustellen, und selbst nach mehr als 100 Stunden Betriebsdauer bei einer Leistung von 15 mW traten keine UV-induzierten Schäden auf.

Auch einen ersten Anwendungstest bestanden die neuen Fasern: Die QUEST-Forscher setzten sie erfolgreich für ihre spektroskopischen Untersuchungen an gefangenen Ionen ein. Der durch die neue Faser stabilisierte UV-Laserstrahl ermöglichte es, den internen Zustand der Ionen besser abzufragen. Neben den Anwendern solcher spektroskopischen Untersuchungen, etwa in Astronomie, Chemie oder Grundlagenforschung in der Physik, könnte das auch denjenigen Forschern nützen, die Quantencomputer entwickeln. Denn die internen Zustände eines Teilchens stellen dabei die neuen digitalen Nullen und Einsen dar.
es/ptb

Ansprechpartner im Max-Planck-Institut für die Physik des Lichts
Dr. Michael H. Frosz
Leiter der Faserproduktion
Max-Planck-Institut für die Physik des Lichts
Günther Scharowsky-Str. 1
91058 Erlangen
Telefon: (09131) 6877-321
E-Mail: michael.frosz@mpl.mpg.de
Internet: www.pcfibre.com

Ansprechpartner in der PTB
Prof. Dr. Piet O. Schmidt
QUEST-Institut in der Physikalisch-Technischen Bundesanstalt (PTB )
Bundesallee 100
38116 Braunschweig
Telefon (0531) 592-4700
E-Mail: Piet.Schmidt@quantummetrology.de
Internet: www.quantummetrology.de/quest/eqm

Die Originalveröffentlichung
F. Gebert, M. H. Frosz, T. Weiss, Y. Wan, A. Ermolov, N. Y. Joly, P. O. Schmidt, and P. St. J. Russell: Damage-free single-mode transmission of deep-UV light in hollow-core PCF. Optics Express 22, 15388 (2014), http://dx.doi.org/10.1364/OE.22.015388

http://www.ptb.de/de/aktuelles/archiv/presseinfos/pi2014/pitext/pi140702.html

Media Contact

Erika Schow idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Aufbruchstimmung in der Alzheimer-Forschung

Bei der Alzheimer Erkrankung lagern sich Eiweiße im Gehirn ab und schädigen es. Prof. Dr. Susanne Aileen Funke von der Hochschule Coburg hat eine Methode gefunden, die solche gefährlichen Eiweißverbindungen…

Chronische Entzündungen durch Ansätze aus der Natur behandeln

Die interdisziplinäre Forschungsgruppe „nature4HEALTH“ hat jüngst ihre Arbeit aufgenommen. Das Team der Friedrich-Schiller-Universität Jena und des Universitätsklinikums Jena entwickelt ganzheitliche naturstoffbasierte Therapieansätze für die Behandlung chronisch-entzündlicher Erkrankungen. Chronische Entzündungen sind…

Antivirale Beschichtungen und Zellkultur-Oberflächen maßgeschneidert herstellen

Verfahren der Kieler Materialwissenschaft ermöglicht erstmals umfassenden Vergleich von Beschichtungen für biomedizinische Anwendungen. Der Halteknopf im Bus, die Tasten im Fahrstuhl oder die Schutzscheibe am Anmeldetresen in der Arztpraxis: Täglich…

Partner & Förderer