„Geisterspiegel“ für Hochleistungslaser

Experimentalaufbau im Labor von Prof. Dr. Dino Jaroszynski an der Central Laser Facility am Rutherford Appleton Laboratory.
(c) University of Strathclyde

Um Laserlicht zu lenken, braucht es nicht unbedingt materielle Spiegel. Ein Forschungsteam unter britischer Leitung und mit Beteiligung von PD Dr. Götz Lehmann von der Heinrich-Heine-Universität Düsseldorf (HHU) hat ein grundlegend neues Konzept experimentell verifiziert: die Lichtreflektion an regelmäßigen Plasmastrukturen. Diese Methode kann insbesondere für kompakte Hochleistungslaser wichtig werden. Sie berichten darüber in der Fachzeitschrift Communications Physics.

In immer mehr Forschungs- und Anwendungsbereichen werden Laser mit extrem hohen Leistungen benötigt. Ein prominentes Beispiel hierfür sind die Durchbrüche bei der lasergetriebenen Trägheitsfusion, die das US-amerikanische Lawrence Livermore National Laboratory im Dezember 2022 vermeldete.

Die nächste Generation von gepulsten Ultrahochleistungslastern wird für Leistungsbereiche von Hunderten von Petawatt (10^15 Watt) bis Exawatt (10^18 Watt) ausgelegt. Gleichzeitig sollen die Aufbauten immer kompakter werden; sie sollen nicht mehr die Größe von Sporthallen haben, sondern in Universitätslaboren untergebracht werden können.

Die Entwicklung solch kompakter und leistungsstarker Anlagen stellt große Anforderungen an die optischen Elemente in solchen Lasern, die die Laserstrahlen führen und formen. Typischerweise werden hierfür Gitter und Spiegel genutzt. Bei den sehr hohen Leistungsdichten und kleinen Abmessungen kann aber die Lichtleistung so groß werden, dass die Festkörperspiegel beschädigt oder sogar zerstört werden.

Bild vergrößern…
Simulationsergebnisse aus der ursprünglichen Publikation von 2016 zur Reflektion von Laserlicht am Plasmagitter.
HHU / Götz Lehmann

Ein gänzlich neues Konzept, der „Geisterspiegel“, kommt ohne klassisch-spiegelnde Festkörperoberflächen aus. Verwendet werden sollen Plasmen – also Gase, in denen die Atome vollständig ionisiert sind –, in denen kurzzeitig regelmäßige Strukturen induziert werden. Diese können ebenfalls Licht reflektieren oder anderweitig manipulieren.
Das Konzept wurde 2016 theoretisch von Prof. Dr. Karl-Heinz Spatschek und PD Dr. Götz Lehmann am Institut für Theoretische Physik I der HHU erarbeitet und in Physical Review Letters veröffentlicht. Die Physiker zeigten, dass es möglich ist, mittels Lasern reflektierende Plasmastrukturen zu erzeugen.

Ein Forschungsteam unter der Leitung von Prof. Dr. Dino Jaroszynski von der schottischen Universität in Strathclyde hat nun unter Beteiligung von Götz Lehmann das Konzept experimentell bestätigt. Sie haben einen „Geisterspiegel“ entwickelt und getestet. Die Ergebnisse stellten sie in der Fachzeitschrift Communications Physics im Januar 2023 vor. Lehmann wirkte bei der Konzeption und der Dateninterpretation im Rahmen des Düsseldorfer Modells mit.

Das Team realisierte mithilfe gegenläufiger Laserstrahlen einen geschichteten Plasmaspiegel. Die Laserstrahlen erzeugen dazu im Plasma eine Schwebungswelle, die wiederum die Elektronen und Ionen im Plasma in die regelmäßige Gitterstruktur treibt. Eine solche Struktur wirkt als sehr robuster Spiegel mit hohem Reflexionsvermögen.
Diese Spiegel sind sehr flüchtig, sie existieren nur für einige bis wenig hundert Pikosekunden (10^-12 Sekunden). Dies reicht aber aus, um die ungleich kürzeren Hochleistungslaserpulse – die eine Länge im Femtosekundenbereich (10^-15 Sekunden) haben – zu reflektieren.

Prof. Jaroszynski: „Unsere Arbeit bringt den Stand der Technik im Bereich der Hochleistungslaser erheblich voran. Die so erzeugbaren robusteren und kompakteren optischen Komponenten können einen Paradigmenwechsel bei Hochleistungslasern bewirken.“

Dr. Gregory Vieux aus Strathclyde, der die Experimente am Rutherford-Appleton-Laboratory (RAL) in Chilton / UK maßgeblich mit konzipierte und durchführte, sagt: „Die Plasmen halten Intensitäten von bis zu 10^18 Watt pro Quadratzentimeter stand. Dies übersteigt die Zerstörungsschwelle von konventionellen optischen Komponenten um vier bis fünf Größenordnungen. Dadurch wiederum kann die Größe optischer Elemente um zwei oder drei Größenordnungen reduziert werden, so dass Optiken – die sonst die Größe von einem Meter haben – auf Millimeter oder Zentimeter schrumpfen könnten.“

Lehmann: „Die Arbeit zeigt das gute Zusammenspiel von Theorie und Experiment. Es ist erfreulich, dass wir die in Düsseldorf gelegten Grundlagen nun so eindrucksvoll experimentell bestätigt finden.“

An den Forschungsarbeiten waren neben den Universitäten Strathclyde und Düsseldorf auch die Universitäten in Frankfurt und in Lissabon sowie das GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, das Ulsan National Institute of Science and Technology (UNIST) in Südkorea und das RAL beteiligt. Die relativistische Laser-Plasma-Physik ist ein Schwerpunkt im Fach Physik an der Heinrich-Heine-Universität Düsseldorf.

Physik: Veröffentlichung in Communications Physics

Originalpublikation:

Vieux, G., Cipiccia, S., Welsh, G.H. et al., The role of transient plasma photonic structures in plasma-based amplifiers, Communications Physics 6, 9 (2023). DOI: 10.1038/s42005-022-01109-5

https://www.hhu.de/die-hhu/presse-und-marketing/aktuelles/pressemeldungen-der-hhu/news-detailansicht/geisterspiegel-fuer-hochleistungslaser

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer