Explosion auf einem Weißen Zwerg direkt beobachtet

Illustration eines Feuerballs aus Röntgenstrahlung, auf einem sogenannten Weißen Zwerg. (Illustration: Annika Kreikenbohm)

Wenn Sterne wie unsere Sonne ihren Brennstoff verbraucht haben, schrumpfen sie zu Weißen Zwergen. Manchmal zucken solche Objekte in einer superheißen Explosion noch einmal auf und produzieren einen Feuerball aus Röntgenstrahlung. Einen solchen Ausbruch im Röntgenlicht konnte ein Forschungsteam unter Führung der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) jetzt zum ersten Mal direkt beobachten.

„Dabei kam uns auch der Zufall zu Hilfe“, erklärt Ole König vom Astronomischen Institut der FAU in der Dr. Karl Remeis-Sternwarte Bamberg, der gemeinsam mit dem FAU-Astrophysiker Prof. Dr. Jörn Wilms und dem Forschungsteam bestehend aus dem Max-Planck-Institut für extraterrestrische Physik in Garching, der Eberhard Karls Universität Tübingen, der Universitat Politécnica de Catalunya in Barcelona und dem Leibniz-Institut für Astrophysik Potsdam in der renommierten Fachzeitschrift Nature über die Beobachtung berichtet. „Solche Röntgenblitze lassen sich kaum vorhersagen, dauern nur wenige Stunden und das Beobachtungsinstrument muss in dieser Zeit auf den Ausbruch zielen“, schildert der Astrophysiker die Zusammenhänge.

Bei diesem Instrument handelt es sich um das eROSITA-Röntgen-Teleskop, das eineinhalb Millionen Kilometer von der Erde entfernt seit 2019 den Himmel nach weichen Röntgenstrahlen durchmustert. Dabei wurde am 7. Juli 2020 starke Röntgenstrahlung in einem Bereich des Himmels gemessen, der vier Stunden vorher noch völlig unauffällig gewesen war. Als das Röntgen-Teleskop vier Stunden später die gleiche Stelle am Himmel erneut musterte, war diese Strahlung wieder verschwunden. Weniger als acht Stunden hatte der Röntgenblitz also gedauert, der vorher das Zentrum des Detektors völlig überbelichtet hatte.

Solche Röntgen-Ausbrüche hatten theoretische Überlegungen bereits vor mehr als 30 Jahren vorgesagt. Sie waren bisher aber noch nie direkt beobachtet worden. Diese Feuerbälle aus Röntgenstrahlen entstehen auf der Oberfläche von Sternen, die eine ähnliche Größe wie unsere Sonne hatten, bevor sie ihre Brennstoffvorräte aus Wasserstoff und später aus Helium tief in ihrem Inneren weitgehend verbraucht hatten. Diese alten Sterne schrumpfen sehr stark zusammen, bis ein „Weißer Zwerg“ übrigbleibt, der ähnlich groß wie die Erde ist, aber eine Masse enthält, die ähnlich groß wie unsere Sonne sein kann. „Diese Verhältnisse kann man sich an einem Beispiel gut vorstellen“, erklärt Jörn Wilms: „Stellt man sich die Sonne in der Größe eines Apfels vor, hätte die Erde die Dimension eines Stecknadelkopfes, der in zehn Metern Entfernung um den Apfel kreist.“

Sterne in Form eines Edelsteins

Verkleinert man wiederum einen Apfel auf die Größe eines Stecknadelkopfes, behält dieses winzige Teilchen das vergleichsweise riesige Gewicht des Apfels. „Ein Teelöffel Materie aus dem Inneren eines Weißen Zwergs hat daher leicht die Masse eines Lastkraftwagens“, erklärt Jörn Wilms weiter. Weil diese ausgebrannten Sterne hauptsächlich aus Sauerstoff und Kohlenstoff bestehen, ähneln sie einem ebenfalls aus Kohlenstoff bestehenden riesigen Diamanten, der die Größe der Erde hat und im Weltraum schwebt. Diese Objekte in Form eines Edelsteins sind zwar immer noch heiß und leuchten daher weiß. Nur ist diese Strahlung schwach und lässt sich daher von der Erde aus gesehen kaum entdecken.

Es sei denn, der alte Stern wird von einem Stern begleitet, in dem das Sonnenfeuer noch brennt und von dem dann Material auf ihn übergehen kann. „Dieser Wasserstoff kann sich mit der Zeit zu einer nur wenige Meter dicken Schicht auf der Oberfläche der Sternenleiche sammeln“, erklärt FAU-Astrophysiker Jörn Wilms. In dieser Schicht aber erzeugt die riesige Schwerkraft einen gigantischen Druck, der so groß werden kann, dass dort das Sternenfeuer wieder zündet. In einer Kettenreaktion entsteht rasch eine riesige Explosion, in der die Wasserstoffschicht wieder abgesprengt wird. Die Röntgenstrahlung einer solchen Explosion hat dann am 7. Juli 2020 die Detektoren von eROSITA getroffen und überbelichtet.

„Mit Modellrechnungen, mit denen wir ursprünglich die Entwicklung des Röntgen-Instruments begleitet hatten, konnten wir dann in einer aufwändigen Arbeit das eigentlich überbelichtete Bild genauer analysieren und so erstmals einen Blick hinter die Kulissen einer solchen „Nova“ genannten Explosion eines Weißen Zwergs werfen“, schildert Jörn Wilms die weitere Forschung. Nach diesen Ergebnissen sollte der Weiße Zwerg ungefähr die Masse unserer Sonne haben und damit relativ groß sein. Bei der Explosion entstand ein 327.000 Grad heißer Feuerball, der damit rund sechzigmal wärmer als unsere Sonne war.

Weil bei solchen Novae der Energie-Nachschub fehlt, kühlen sie rasch aus, und die Röntgenstrahlung wird weicher, bis sie schließlich zu sichtbarem Licht wird, das einen halben Tag nach der eROSITA-Entdeckung auch die Erde erreichte und mit optischen Teleskopen beobachtet wurde. „Es tauchte dann ein scheinbar heller Stern auf, der sogar mit dem Auge sichtbar war“, erklärt Ole König. Solche scheinbaren „neuen Sterne“ wurden auch früher schon beobachtet und wegen ihres unverhofften Auftauchens „Nova Stella“ genannt, was „neuer Stern“ bedeutet. Weil diese Nova aber erst nach dem Röntgenblitz sichtbar wird, ist eine Vorhersage für solche Ausbrüche sehr schwierig, die daher eher zufällig die Röntgen-Detektoren treffen. „Da hatten wir wirklich Glück“, freut sich Ole König.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Jörn Wilms
Dr. Karl-Remeis-Sternwarte Bamberg – Astronomisches Institut der FAU
Tel.: 0951/95222-13
joern.wilms@sternwarte.uni-erlangen.de

Originalpublikation:

https://www.nature.com/articles/s41586-022-04635-y

https://www.fau.de/2022/05/news/wissenschaft/explosion-auf-einem-weissen-zwerg-direkt-beobachtet/

Media Contact

Blandina Mangelkramer Presse und Kommunikation
Friedrich-Alexander-Universität Erlangen-Nürnberg

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Auf Spurensuche im Abwasser: Mikroplastik, Schwermetalle, Arzneimittel

Land Schleswig-Holstein unterstützt Ausbau der Versuchs- und Ausbildungskläranlage der TH Lübeck in Reinfeld mit 700.000 Euro. Geplante Investition in Erweiterung der Anlage zukunftsweisend für die Abwasserbehandlung in SH. Die TH…

Mehr Resilienz für kritische Infrastrukturen

Kritische Infrastrukturen wie Stromnetze oder Verkehrswege sind zunehmend von der Digitalisierung geprägt. Diese ermöglicht, die Systeme in Echtzeit flexibel und effizient zu steuern, macht sie aber auch anfälliger für Störungen…

Mikrowelle statt Hochofen

Verfahrenstechniker der Uni Magdeburg testen Einsatz von Mikrowellentechnologie als Alternative für energieintensive Großproduktionsverfahren. Verfahrenstechnikerinnen und -techniker der Otto-von-Guericke-Universität Magdeburg wollen die Mikrowellentechnologie als umweltschonende Alternative für energieintensive und schwer kontrollierbare…

Partner & Förderer