Es tut sich was auf den Nanoteilchen

Ein Nanopartikel im Feld eines Femtosekunden-Laserpulses mit maßgeschneiderter Wellenform und Polarisation. Die kontrollierte Verstärkung des Feldes in bestimmten nanoskopischen Bereichen des Nanopartikels (gelbe Flecken) führt zu ortsselektiven photochemischen Reaktionen der an der Oberfläche adsorbierten Moleküle. Die Abbildung der von diesen Regionen emittierten Molekülfragmente ermöglicht eine rein optische Kontrolle der Reaktionsorte mit einer Auflösung im Nanometerbereich. Abbildung: RMT.Bergues

Physiker am Max-Planck-Institut für Quantenoptik und der Ludwig-Maximilians-Universität München in Zusammenarbeit mit der Stanford University haben erstmals mit Hilfe von Laserlicht den Ort von lichtinduzierten Reaktionen auf der Oberfläche von Nanopartikeln gesteuert.

Starke elektromagnetische Felder auf Nanopartikeln zu kontrollieren ist der Schlüssel, um auf deren Oberflächen gezielt molekulare Reaktionen auszulösen. Eine solche Kontrolle über Starkfelder erreicht man über Laserlicht. Zwar wurden in der Vergangenheit eine laserinduzierte Entstehung und Brechung von molekularen Bindungen auf Nanopartikeloberflächen beobachtet, doch eine nanoskopische optische Kontrolle von Oberflächenreaktionen wurde bisher nicht erreicht.

Ein internationales Team um Dr. Boris Bergues und Prof. Matthias Kling an der Ludwig-Maximilians-Universität (LMU) und dem Max-Planck-Institut für Quantenoptik (MPQ) in Zusammenarbeit mit der Stanford University hat diese Lücke nun geschlossen. Die Physiker bestimmten erstmals den Ort von lichtinduzierten molekularen Reaktionen auf der Oberfläche von isolierten Siliziumdioxid-Nanopartikeln mit Hilfe von ultrakurzen Laserpulsen.

Es herrscht Trubel auf der Oberfläche von Nanopartikeln. Moleküle docken an, lösen sich und verändern ihren Aufenthaltsort. Das alles treibt chemische Reaktionen an, verändert Materie und lässt sogar neue Materialien entstehen. Das Geschehen im Nanokosmos lässt sich mit Hilfe von elektromagnetischen Feldern kontrollieren. Das hat nun ein Team um Dr. Boris Bergues und Prof. Matthias Kling aus der Ultraschnellen Elektronik und Nanophotonik Gruppe gezeigt. Das Team hat mittels starker, Femtosekunden-langer Laserpulse hierfür lokale Felder auf den Oberflächen isolierter Nanopartikel erzeugt. Eine Femtosekunde ist ein Millionstel einer milliardstel Sekunde.

Mit Hilfe der so genannten Reaktions-Nanoskopie, einer neuen Technik, die kürzlich in der gleichen Gruppe entwickelt wurde, waren die Physiker in der Lage, den Reaktionsort und den Geburtsort von Molekülfragmenten auf der Oberfläche von Siliziumdioxid-Nanopartikeln abzubilden – und dies mit einer Auflösung besser als 20 Nanometer. Die nanoskopische örtliche Kontrolle, die mit noch höherer Auflösung erreichbar ist, bewirkten die Wissenschaftler, indem sie die Felder von zwei Laserpulsen mit unterschiedlicher Farbe, kontrollierter Wellenform und Polarisation überlagerten. Hierbei mussten sie den Zeitversatz zwischen den beiden Pulsen mit einer Genauigkeit von Attosekunden einstellen. Eine Attosekunde ist noch tausend Mal kürzer als eine Femtosekunde. Bei der Wechselwirkung mit diesem maßgeschneiderten Licht wurden die Oberfläche der Nanoteilchen und die dort adsorbierten Moleküle an gezielten Stellen ionisiert, wobei die Moleküle in verschiedene Fragmente aufgespalten wurden.

„Molekulare Oberflächenreaktionen auf Nanopartikeln spielen in der Nanokatalyse eine grundlegende Rolle. Sie könnten ein Schlüssel zur sauberen Energiegewinnung sein, insbesondere mittels photokatalytischer Wasserspaltung“, erläutert Matthias Kling. „Unsere Ergebnisse ebnen den Weg, um photokatalytische Reaktionen auf Nanopartikeln in Zukunft nicht nur räumlich mit Nanometerauflösung, sondern auch zeitlich mit Femtosekundenauflösung zu verfolgen. Dies wird detaillierte Einblicke in die Dynamik von Oberflächenprozessen auf deren natürlichen Raum- und Zeitskalen ermöglichen“, ergänzt Boris Bergues.

Die Wissenschaftler gehen davon aus, dass sich dieser vielversprechende neue Ansatz auf zahlreiche komplexe isolierte nanostrukturierte Materialien anwenden lässt.

Thorsten Naeser

Wissenschaftliche Ansprechpartner:

Dr. Boris Bergues
Leiter des Teams für Starkfeld-Dynamik im Labor für Attosekundenphysik
Ludwig-Maximilians-Universität München & Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
D-85748 Garching
Tel.: (+ 49 89) 32905 – 330
E-Mail: boris.bergues@mpq.mpg.de
http://attosecondimaging.de/strong-field-dynamics/

Prof. Dr. Matthias Kling
Ultrafast Electronics and Nanophotonics Group
SLAC, Stanford University, 2575 Sand Hill Rd, CA 94025, USA
LMU Munich / Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1, 85748 Garching, Germany
Tel.: +1-650-926-2745
E-Mail: kling@stanford.edu
https://uen.stanford.edu

Originalpublikation:

Wenbin Zhang, Ritika Dagari, Philipp Rosenberger, Ana Sousa, Marcel Neuhaus, Weiwei Lii, Shrjeel A. Khan, Ali Alnaser, Emiliano Cortes, Stefan Maier, Cesar Costa-Vera, Matthias F. Kling, Boris Bergues
All-optical nanoscopic spatial control of molecular reaction yields on nanoparticles
Optica, April 2022
DOI:10.1364/OPTICA.453915

https://www.mpq.mpg.de/6717404/05-light-controlled-reactions-at-the-nanoscale?c=2337

Media Contact

Katharina Jarrah Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Techtextil Innovation Award 2022

… geht an das ITM für entwickelte neuartige textile Herzklappenprothesen. Wissenschaftler:innen vom Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden sind am 21. Juni 2022 für ihre gewebten…

Quo vadis – wo steht die Entwicklung von Laserstrahlquellen?

Nach einer pandemiebedingten Pause von vier Jahren traf sich die Community der industriellen Lasertechnik zum »AKL’22 – International Laser Technology Congress« vom 4. bis zum 6. Mai 2022 in Aachen….

Innovative Kopfhörer erkennen die Schallquellen im „toten Winkel“ des Trägers

Forscher der Universität Ulm haben in einem von der Baden-Württemberg Stiftung geförderten Projekt ein innovatives Filterelement für Kopfhörer entwickelt. Damit kann der Träger unterscheiden, ob sich eine externe Schallquelle von…

Partner & Förderer