Einmal durchleuchtet – dreifacher Informationsgewinn

Die Physiker Dr. Andreas Johannes (l.) und Prof. Dr. Carsten Ronning in einem Labor am Institut für Festkörperphysik der Universität Jena. Foto: Jan-Peter Kasper/FSU

Egal wie groß Handys oder Computer sind – die Funktion solcher elektronischer Geräte hängt vor allem vom Zusammenwirken verschiedener Materialien ab. Deshalb müssen sowohl Ingenieure als auch Wissenschaftler genau wissen, wie sich bestimmte chemische Elemente innerhalb eines Computerchips bzw. einer Diode oder eines Transistors verhalten, und was passiert, wenn sie sich miteinander verbinden.

Physiker der Friedrich-Schiller-Universität Jena haben jetzt eine neue Methode entwickelt, durch die sie mehrere Informationen gleichzeitig aus dem Inneren eines nanoskaligen Bauteils erhalten – während es sich im aktiven Zustand befindet. Über ihre Erkenntnisse berichten die Jenaer Wissenschaftler und ihre Partner in der aktuellen Ausgabe des Fachmagazins „Science Advances“.

„Mit unserer Methode können wir gleichzeitig Informationen über die Komposition der Elemente, also ihr Verhältnis zueinander, über ihre Oxidationsstufe, also ihre Art der Bindung, die sie miteinander eingegangen sind, sowie über interne elektrische Felder, die dabei entstanden sind, abrufen“, erklärt Prof. Dr. Carsten Ronning von der Uni Jena.

„Das sind alles elementare Indikatoren für die Funktion des Bauteils“, so der Leiter des Projektes. Bei der Vorgehensweise, die die Jenaer Physiker gemeinsam mit Kollegen aus Grenoble, Madrid und Wien entwickelt haben, müssen die zu untersuchenden Bauteile allerdings nicht aufwendig präpariert oder möglicherweise sogar zerstört werden. „Genau genommen könnten wir die Dioden eines eingeschalteten Handys durchleuchten, ohne dass es beschädigt werden würde“, sagt Ronning.

Röntgenstrahl aus dem Teilchenbeschleuniger

Ausschlaggebend für den Forschungsansatz ist dabei ein sehr dünner Röntgenstrahl, mit dem die Jenaer Physiker zunächst ein eigens für ihre Experimente angefertigtes Bauteil durchleuchtet haben.

„Wir haben in einen etwa 200 Nanometer dicken Siliziumdraht Arsen- und Galliumatome eingebracht, die sich durch Erhitzen an einem Punkt agglomerieren, also zusammenballen, wodurch ein funktionsfähiges Bauteil entsteht“, erklärt Prof. Ronning. „Dann sind wir den Draht mit einem im Durchmesser 50 Nanometer dicken Röntgenstrahl entlanggefahren und haben ihn so Stück für Stück bestrahlt.“

Die Wissenschaftler stellten dabei fest, dass das Elementgemisch die Röntgenstrahlung – wie bei einer Solarzelle – in elektrischen Strom umwandelte, der – wie bei einer Diode – nur in eine Richtung floss. So machten die Wissenschaftler die internen elektrischen Felder, die für die Funktion des Teils unerlässlich sind, sichtbar. Zudem emittierte das Bauteil Licht.

„Durch die Röntgenstrahlung werden die Atome im Bauteil angeregt und senden ihrerseits eine charakteristische Strahlung aus“, erklärt Dr. Andreas Johannes, der die Experimente durchgeführt hat. „Dadurch erhalten wir ein Spektrum, das uns wertvolle Informationen über die einzelnen Elemente und ihr Verhältnis zueinander liefert.“

Variiert man die Energie der einfallenden Röntgenstrahlung, dann ergeben sich Spektren, die Aussagen über die Oxidationsstufe der Elemente – und damit über die Verbindungen an sich – zulassen.

Nur neue Methode ermöglicht diesen Informationsgewinn durch eine Messung

„All diese Informationen durch eine Messung lassen sich bisher nur durch unsere Methode gewinnen“, sagt Andreas Johannes. Zwar gebe es vergleichbare Möglichkeiten im Bereich der Elektronenmikroskopie, doch müssten die Bauteile hierbei besonders präpariert und eventuell zerstört werden, da die Eindringtiefe des Elektronenstrahls weitaus geringer ist.

Zudem könnten solche Messungen nur im Vakuum stattfinden – die Röntgenmethode allerdings sei nahezu unabhängig von einer speziellen Umgebung.

Bisher können solche feinen Röntgenstrahlen nur Teilchenbeschleuniger erzeugen, weswegen die Jenaer Physiker für die Entwicklung der neuen Messmethode eng mit der European Synchrotron Radiation Facility (ESRF) im französischen Grenoble zusammengearbeitet haben.

Diese Einrichtungen stehen sowohl der Wissenschaft als auch der Industrie zur Verfügung, so dass bereits vorhandene Bauteile genauer durchleuchtet und vor allem neue Materialkombinationen ausprobiert werden können, um leistungsfähigere Bauteile zu erhalten.

„Unsere Methode kann beispielsweise bei der Entwicklung neuer Batterien wertvolle Dienste leisten“, sagt Andreas Johannes. „Denn auch diese möchten Forscher vor allem in Betrieb und voll funktionsfähig untersuchen, um etwa die Oxidationsstufen der Elemente herauszulesen.“

Original-Publikation:
Andreas Johannes et. al.: In-operando X-ray imaging of nanoscale devices: composition, valence, and internal electrical fields, Science Advances 2017,DOI: 10.1126/sciadv.aao4044

Kontakt:
Prof. Dr. Carsten Ronning
Institut für Festkörperphysik der Friedrich-Schiller-Universität Jena
Helmholtzweg 3, 07743 Jena
Tel.: 03641 / 947300
E-Mail: carsten.ronning[at]uni-jena.de

http://www.uni-jena.de

Media Contact

Sebastian Hollstein idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Einfluss von Fahrgeräuschen auf individuelle Klangpräferenzen im Auto

Mehr als laute Bässe! Laute oder unangenehme Fahrgeräusche können den Musikgenuss im Auto beeinträchtigen. Einige Soundsysteme passen daher dynamisch Lautstärke und Bässe an. Individuelle Klangpräferenzen werden dabei aber nicht berücksichtigt….

Mysteriöse Teilchen gesucht

HZDR-Team will Axionen im Licht von drei Superlaser-Strahlen aufspüren. Seit mehr als vier Jahrzehnten wird nach ihm gefahndet: Das Axion, ein bis dato unentdecktes, hypothetisches Teilchen, könnte die uns bekannten…

SkiveAll: Funktionserweiterung »Maschinenzyklus«

… bringt Universalmaschinen innovatives Wälzschälen bei. Das Wälzschälen ist ein innovatives Verfahren zur Fertigung hochwertiger verzahnter Bauteile, wie sie beispielsweise in Planetengetrieben für die Elektromobilität benötigt werden. Es kombiniert die…

Partner & Förderer