Die Loopings der Bakterien: Forschungsteam mit Beteiligung der Universität Göttingen analysiert Fortbewegung

Computersimulation des Göttinger Teams: ein schwimmendes Bakterium mit nach vorn und nach hinten gerichteten Geißeln. Foto: Sarah Mohammadinejed, Univ. Göttingen

Die Forscherinnen und Forscher nutzten eine Kombination von neuen experimentellen Methoden und Computersimulationen: Sie verfolgten die Bewegung der „Mikroschwimmer“ mit Hilfe von dreidimensionaler Mikroskopie und analysierten sie mit einer sehr hochfrequenten Dunkelfeld-Bildgebung.

Ein Team der Universität Göttingen ergänzte die Arbeiten mit Simulationen, um herauszufinden, welcher Antriebsmechanismus bei den Bakterien für die beobachteten Schwimmbahnen verantwortlich ist.

Das Ergebnis ist erstaunlich: Die beiden Geißelbündel, die nahe beieinander auf dem Zellkörper verankert sind, zeigen beim Schwimmen in entgegengesetzte Richtung. Dadurch wird die Bakterienzelle von einem Bündel gezogen und vom anderen geschoben. Diese Art des Antriebs wurde noch bei keinem anderen Mikroorganismus beobachtet.

Die daraus resultierenden Schwimmbahnen beschreiben doppelte oder sogar dreifache Spiralen. Das Bakterium macht gewissermaßen Loopings. Die tatsächliche Geschwindigkeit ist noch größer als angenommen, da die Spiralen die zurückgelegte Strecke erheblich vergrößern.

Die reale Geschwindigkeit liegt im Bereich von 400 bis 500 Mikrometer (millionstel Meter) pro Sekunde. Die Bakterien, die ungefähr 1 Mikrometer groß sind, bewegen sich also über 500 Körperlängen pro Sekunde. Zum Vergleich: Olympische Schwimmer schaffen nur eine Körperlänge pro Sekunde.

Doch was ist der Zweck dieser ungewöhnlichen Schwimmweise? „Wir nehmen an, dass diese Art des Spiralschwimmens in einer sedimentären Umgebung voller Hindernisse, die durch Schleifen umgangen werden können, von Vorteil ist“, sagt Prof. Dr. Stefan Klumpp vom Institut für Dynamik komplexer Systeme der Universität Göttingen.

„Diese Besonderheit könnte auch in der medizinischen Mikrorobotik ausgenutzt werden, um sich im Blut von Patienten zu bewegen und zum Beispiel schnell einen Tumor zu erreichen.“

Tatsächlich bewegen sich diese Bakterien von sich aus in anaerobe Umgebungen hinein. Sie können daher Chemotherapeutika direkt in die Nähe eines Tumors bringen, der ebenfalls in einer sauerstoffarmen Umgebung liegt.

Prof. Dr. Stefan Klumpp
Georg-August-Universität Göttingen
Fakultät für Physik – Institut für Dynamik komplexer Systeme
Friedrich-Hund-Platz 1, 37077 Göttingen
Telefon: 0551 39-26942
E-Mail: stefan.klumpp@phys.uni-goettingen.de

www.uni-goettingen.de/theoretische_biophysik

K. Bente, S. Mohammadinejad, et al. High-speed motility originates from cooperatively pushing and pulling flagella bundles in bilophotrichous bacteria. eLife (2020). https://doi.org/10.7554/eLife.47551

Media Contact

Thomas Richter idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-goettingen.de/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Das Auto als rollender Supercomputer

Moderne Autos sind mit Elektronik vollgepackt. Das Management der vielen Rechner und Assistenzsysteme ist komplex, zudem erhöhen die Kabelbäume das Gewicht der Fahrzeuge. Fraunhofer-Forschende arbeiten im Verbundprojekt CeCaS an einer…

Digitaler Zwilling für flexible Postsendungen

Biegeschlaffe Postsendungen mit flexibler Verpackung – sogenannte „Polybags“ – stellen Logistiker bei der automatischen Sortierung vor Probleme. Dank moderner Simulationsmethoden gibt es dafür nun eine breit anwendbare Lösung. Wer online…

Klebstoffe aus Federn

Klebstoffe beruhen fast immer auf fossilen Rohstoffen wie Erdöl. Fraunhofer-Forschende haben nun ein Verfahren entwickelt, mit dem der biobasierte Rohstoff Keratin erschlossen wird. Die leistungsfähige Protein-Verbindung ist beispielsweise in Hühnerfedern…

Partner & Förderer