Das Verhalten von Sternmaterie unter extremem Druck

Mit Hilfe des stärksten Lasers der Welt konnten Forscher*innen Laborexperimente durchführen, bei denen sie Ionisation durch extreme Kompression von Materie erreicht haben.
(c) Greg Stewart/SLAC National Accelerator Laboratory; Inset: Jan Vorberger/Helmholtz-Zentrum Dresden-Rossendorf

Einem internationalen Team von Forscher*innen unter Beteiligung der Universität Rostock und des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) ist es in Laborexperimenten gelungen, Materie unter solch extremen Bedingungen zu untersuchen, wie sie sonst nur im Inneren von Sternen oder Riesenplaneten vorkommt.

Ihre in der Zeitschrift Nature veröffentlichten Forschungsergebnisse (DOI: 10.1038/s41586-023-05996-8) enthüllen die Materialeigenschaften und das Verhalten von Materie unter extremer Kompression und haben wichtige Auswirkungen auf die Astrophysik und die Kernfusionsforschung.

Um die extremen Bedingungen zu erzeugen, nutzten die Forscher*innen den leistungsstärksten Laser der Welt: die National Ignition Facility (NIF) im kalifornischen Livermore. Das Team beschoss für die Experimente zunächst mit 184 Laserstrahlen das Innere eines Goldzylinders. Die in Röntgenstrahlen umgewandelte Laserenergie erhitzte daraufhin eine in der Mitte platzierte Hohlkugel aus Beryllium, die gerade einmal einen Durchmesser von nur zwei Millimetern umfasste.

Durch die Erwärmung dehnte sich die Außenseite der Kugel rasch aus, während gleichzeitig die Innenseite mit hoher Geschwindigkeit in sich zusammenfiel. Dadurch traten im Zentrum Temperaturen von etwa zwei Millionen Grad Celsius und Drücke von bis zu drei Milliarden Atmosphären auf. In der Folge entstand im Labor für einige Sekundenbruchteile ein winziges Stück Materie, das sich sonst im Universum nur in Zwergsternen finden lässt.

Die Berylliumprobe, die bis zum 30-fachen ihrer ursprünglichen Festkörperdichte komprimiert war, wurde durch Streuung intensiver Röntgenstrahlung untersucht, um Rückschlüsse auf ihre Dichte, Temperatur und elektronische Struktur zu ziehen. Die Ergebnisse zeigten, dass nach starker Erhitzung und Kompression mindestens drei von vier Elektronen im Beryllium in leitende Zustände übergingen. Darüber hinaus identifizierten die Forschenden eine unerwartet schwache elastische Streuung der Röntgenstrahlung, was auf eine geringere Bindung des verbleibenden Elektrons an den Atomkern hinweist.

Die Materie im Inneren von Riesenplaneten und kleinen Sternen wird durch das Gewicht der darüber liegenden Schichten stark komprimiert. Die hohen Drücke, die die extreme Kompression erzeugt, führen die Atome so eng zusammen, dass kein Platz mehr für gebundene Elektronen bleibt. Allein durch die hohe Dichte kann ein vollständig ionisiertes Plasma aus Atomkernen und freien Elektronen entstehen.

„Der Grad der Ionisation von Atomen im Inneren von Sternen ist entscheidend dafür, wie effektiv Energie vom Zentrum durch Strahlung nach außen transportiert werden kann. Ist dies zu stark eingeschränkt, wird es in den Himmelskörpern turbulent, ähnlich wie in einem Kochtopf“, erläutert Dominik Kraus, der zu Beginn des Projektes noch in Kalifornien tätig war und nun Physikprofessor an der Universität Rostock sowie Gruppenleiter am Helmholtz-Zentrum Dresden-Rossendorf ist. „Ist es zu turbulent, könnte wahrscheinlich kein Leben, wie wir es kennen, in der nahen Umlaufbahn um kleine Sterne möglich sein.“

„Trotz ihrer Bedeutung für die Struktur und Entwicklung von Himmelsobjekten ist die druckbedingte Ionisation als Weg zu hochionisierter Materie theoretisch nicht gut verstanden, da die erforderlichen extremen Materiezustände im Labor nur sehr schwer zu erzeugen und zu untersuchen sind“, erklärt Tilo Döppner, Projektleiter am Lawrence Livermore National Laboratory sowie Alumnus der Universität Rostock. „Über die Astrophysik hinaus haben die Ergebnisse auch erhebliche Auswirkungen auf die Trägheitsfusionsexperimente an der NIF, wo Röntgenabsorption und Kompressibilität Schlüsselparameter für die Optimierung von Hochleistungsfusionsexperimenten und somit für die mögliche Entwicklung einer nahezu unerschöpflichen, kohlenstofffreien Energiequelle durch lasergetriebene Kernfusion sind.“

„Die bahnbrechenden Ergebnisse wurden auch durch die engagierte Arbeit von Doktoranden an der Universität Rostock und am Helmholtz-Zentrum Dresden-Rossendorf ermöglicht, die teilweise Forschungsaufenthalte an der NIF in Kalifornien absolviert haben“, berichtet Ronald Redmer, Physikprofessor an der Universität Rostock und Experte in der theoretischen Beschreibung von dichten astrophysikalischen Plasmen. „Die Auswertung der Ergebnisse aus dem komplizierten Experimentaufbau und die Modellierung der untersuchten Plasmazustände ist hochkomplex und benötigt enormen Aufwand an Rechenleistung. Es hat mehrere Jahre gebraucht, um das aktuelle Verständnis der experimentellen Daten zu erreichen.“

Weitere Einblicke in Materie bei Drücken von Milliarden Atmosphären versprechen sich die Forschenden auch von einer Anlage in Deutschland. Mit Hilfe der Helmholtz International Beamline for Extreme Fields (HIBEF) am European XFEL in Schenefeld wollen Wissenschaftler*innen der Universität Rostock und des Helmholtz-Zentrums Dresden-Rossendorf ähnliche Bedingungen in deutlich kleinerem Maßstab erreichen. Dadurch würde eine vielfach größere Anzahl von Experimenten möglich, als es aktuell an der NIF realisierbar ist.

Die Forschung ist das Ergebnis einer internationalen Zusammenarbeit im NIF-Discovery-Science-Programm. Neben dem Lawrence Livermore National Laboratory (USA), der Universität Rostock und dem HZDR waren auch Forschende der University of Warwick (Großbritannien), der École normale supérieure de Lyon (Frankreich), des GSI Helmholtzzentrums für Schwerionenforschung in Darmstadt, der University of California Berkeley (USA), des SLAC National Accelerator Laboratory (USA), des Los Alamos National Laboratory (USA), des Imperial College London (Großbritannien) und der First Light Fusion Ltd. (Großbritannien) beteiligt.

Publikation:
T. Döppner, M. Bethkenhagen, D. Kraus, P. Neumayer, D. A. Chapman, B. Bachmann, R. A. Baggott, M. P. Böhme, L. Divol, R. W. Falcone, L. B. Fletcher, O. L. Landen, M. J. MacDonald, A. M. Saunders, M. Schörner, P. A. Sterne, J. Vorberger, B. B. L. Witte, A. Yi, R. Redmer, S. H. Glenzer, D. O. Gericke, Observing the onset of pressure-driven K-shell delocalization, Nature, 2023 (DOI: 10.1038/s41586-023-05996-8)

Weitere Informationen:
Prof. Dr. Dominik Kraus
Universität Rostock sowie Institut für Strahlenphysik am HZDR
Tel.: +49 381 498 6930| E-Mail: dominik.kraus@uni-rostock.de / d.kraus@hzdr.de

Medienkontakt:
Simon Schmitt | Leitung und Pressesprecher
Abteilung Kommunikation und Medien am HZDR
Tel.: +49 351 260 3400 | Mobil: +49 175 874 2865 | E-Mail: s.schmitt@hzdr.de

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Das HZDR entwickelt und betreibt große Infrastrukturen, die auch von externen Messgästen genutzt werden: Ionenstrahlzentrum, Hochfeld-Magnetlabor Dresden und ELBE-Zentrum für Hochleistungs-Strahlenquellen.
Es ist Mitglied der Helmholtz-Gemeinschaft, hat sechs Standorte (Dresden, Freiberg, Görlitz, Grenoble, Leipzig, Schenefeld bei Hamburg) und beschäftigt fast 1.500 Mitarbeiter*innen – davon etwa 670 Wissenschaftler*innen inklusive 220 Doktorand*innen.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Dominik Kraus
Universität Rostock sowie Institut für Strahlenphysik am HZDR
Tel.: +49 381 498 6930| E-Mail: dominik.kraus@uni-rostock.de / d.kraus@hzdr.de

Originalpublikation:

T. Döppner, M. Bethkenhagen, D. Kraus, P. Neumayer, D. A. Chapman, B. Bachmann, R. A. Baggott, M. P. Böhme, L. Divol, R. W. Falcone, L. B. Fletcher, O. L. Landen, M. J. MacDonald, A. M. Saunders, M. Schörner, P. A. Sterne, J. Vorberger, B. B. L. Witte, A. Yi, R. Redmer, S. H. Glenzer, D. O. Gericke, Observing the onset of pressure-driven K-shell delocalization, Nature, 2023 (DOI: 10.1038/s41586-023-05996-8)

https://www.hzdr.de/db/Cms?pOid=69261&pNid=99

Media Contact

Simon Schmitt Kommunikation und Medien
Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

CO2 aus der Müllverbrennung als Wertstoff nutzen

Aus industriellen Prozessen wird tonnenweise Kohlenstoffdioxid freigesetzt und gelangt als klimaschädliches Treibhausgas in die Atmosphäre. Es stattdessen aufzufangen und sinnvoll zu nutzen, ist Ziel des Projekts ReCO2NWert. Im Rahmen dieses…

Neue Modellierungen zur Optimierung elektrostatischer Spritzlackierungen

Weniger Sprühnebel, höhere Effizienz… Hochspannung hilft, Sprühverluste zu vermeiden. Welche physikalischen Prozesse bei der elektrostatisch unterstützten Spritzlackierung ineinandergreifen, zeigt jetzt erstmals ein Computermodell. Mit dessen Hilfe lassen sich Lacke, Lackieranlagen…

TUM-Absolventen schaffen Roboter für flexible Textilien

Start-up sewts mit KI-basierten Industrierobotern erfolgreich. Die Industrieroboter des Münchner Start-up setws lernen mithilfe von KI-Algorithmen, wie sie mit forminstabilen Materialien umgehen müssen. Wäschereien nutzen die Technologie bereits, um etwa…

Partner & Förderer