Das LBT polarisiert: Erstes Licht für die PEPSI-Polarimeter

Das erste polarimetrische Spektrum von PEPSI, vom Stern “Gamma Equ”. Die schwarze Linie stellt das PEPSI-Spektrum dar, die rote zum Vergleich ein HARPS-Pol-Spectrum desselben Sterns. Ilya Ilyin/AIP

Die Installation des am Leibniz-Institut für Astrophysik Potsdam (AIP) entwickelten Instruments PEPSI (Potsdam Echelle Polarimetric and Spectroscopic Instrument) am Large Binocular Telescope (LBT) in Arizona wurde nun erfolgreich fertig gestellt und die beiden Polarimeter in den Brennpunkten des LBT montiert. Wissenschaftler haben das Teleskop auf den Stern Gamma Equ gerichtet und polarisiertes Licht, das in bestimmten Ausbreitungsrichtungen bevorzugt schwingt, erhalten.

Mithilfe der so erstellten Spektren können Astronominnen und Astronomen beispielsweise ableiten, wie die Geometrie und Stärke von magnetischen Feldern auf den Oberflächen von weit entfernten Sternen beschaffen sind, oder das Sternlicht, das von den Atmosphären potenziell bewohnbarer Exoplaneten reflektiert wird, untersuchen.

Ein Polarimeter spaltet das Licht von Sternen gemäß dessen Schwingungsebenen auf. Im Gegensatz dazu zerlegt ein Spektrograf das Licht nach der Schwingungsfrequenz der Wellen. Wenn Astronomen Polarimeter und Spektrograf sowie ein leistungsstarkes Teleskop kombinieren, können sie Spektren von polarisiertem Licht erstellen. Dies erlaubt es ihnen wiederum, die Wellenfront des eintreffenden Sternenlichts vollständig zu charakterisieren und Details, die sonst verborgen blieben, offenzulegen.

Bei der Analyse des magnetischen Referenzsterns Gamma Equ erhielten die Wissenschaftler eine Reihe von Spektren in zirkular und linear polarisiertem Licht. Diese Spektren haben eine Auflösung von R=λ/Δλ=120,000, was bedeutet, dass sie zwei Wellenlängen noch separieren können, die nur fünf Hundertstel vom Durchmesser eines Wasserstoff-Atoms auseinander sind.

Die gemessenen Spektren umfassen zudem gleichzeitig zwei große Wellenlängen-Regionen im optischen Bereich und erreichten ein Signal-zu-Rauschen Verhältnis von 900 in 12 Minuten Belichtungszeit. Da die beiden Polarimeter für die beiden LBT-Teleskope – jedes hat einen Spiegel mit einem Durchmesser von 8,4 Metern – im Design identisch und modular aufgebaut sind, konnte die zirkulare und lineare Polarisation simultan gewonnen werden.

Die Testmessung mit Gamma Equ beinhaltete auch ein so genanntes Null-Spektrum. Ein Null-Spektrum entsteht, wenn die differentielle Beobachtungssequenz in den zwei Fasern ausgetauscht wird. Das Null-Spektrum würde idealerweise alle Polarisation vom Stern auslöschen und wäre unabhängig von der Wellenlänge. Jede verbleibende Polarisation wäre somit auf Effekte des Instruments zurückzuführen.

„Das Null-Spektrum für PEPSI zeigt einen außergewöhnlich niedrigen Grad von instrumenteller Polarisation“, sagt Prof. Dr. Klaus Strassmeier, Principal Investigator des Projekts. „Das ist etwa zehnmal besser als bei den derzeit besten existierenden Spektralpolarimetern, die an anderen Teleskopen verfügbar sind.“ Verschiedene Ausstattungs- und Design-Merkmale von PEPSI erlauben die optimale Konfiguration des Polarimeters. „PEPSI wird es uns zukünftig ermöglichen, die magnetischen Felder von Sternen mit einer enorm hohen Präzision zu messen“, betont Dr. Ilya Ilyin. Alle Partner, die am LBT beteiligt sind und zu denen auch die deutsche astronomische Gemeinschaft gehört, können PEPSI bereits am LBT nutzen.

Mehr Informationen zu PEPSI:
pepsi.aip.de

Mehr Informationen zum LBT:
www.lbto.org
LBT Blog: https://lbtonews.blogspot.com/2017/10/the-lbt-gets-polarized-first-light-for.htm… 

Wissenschaftliche Kontakte:
Prof. Dr. Klaus G. Strassmeier (Principal Investigator), 0331-7499 223, kstrassmeier@aip.de
Dr. Ilya Ilyin (Projektwissenschaftler), 0331-7499 269, ilyin@aip.de

Pressekontakte:
Katrin Albaum (AIP), 0331-7499 803, presse@aip.de
Christian Veillet (Large Binocular Telescope Observatory), +1 (520) 621-5286, cveillet@lbto.org

Bilder:
Bild 1:
Das erste polarimetrische Spektrum von PEPSI. Das Zielobjekt ist der helle magnetische Stern “Gamma Equ”. Die schwarze Linie stellt das PEPSI-Spektrum dar, die rote zum Vergleich ein HARPS-Pol-Spectrum desselben Sternes. Von unten nach oben: Das magnetische Null-Spektrum um einen Faktor fünf vergrößert, die normalisierte lineare Stokes-Komponente U/Ic um einen Faktor fünf vergrößert, die normalisierte lineare Stokes-Komponente Q/Ic um einen Faktor fünf vergrößert, die normalisierte zirkulare Stokes-Komponente V/Ic sowie das normalisierte integrale Licht I/Ic. Bild: Ilya Ilyin/AIP

Bild 2:
Die beiden Polarimeter SX und DS bei den zwei Spiegeln des LBT. Bilder: Klaus Strassmeier/AIP

Das Leibniz-Institut für Astrophysik Potsdam (AIP) widmet sich astrophysikalischen Fragen, die von der Untersuchung unserer Sonne bis zur Entwicklung des Kosmos reichen. Forschungsschwerpunkte sind dabei kosmische Magnetfelder und extragalaktische Astrophysik sowie die Entwicklung von Forschungstechnologien in den Bereichen Spektroskopie, robotische Teleskope und E-Science. Seinen Forschungsauftrag führt das AIP im Rahmen zahlreicher nationaler, europäischer und internationaler Kooperationen aus. Das Institut ist Nachfolger der 1700 gegründeten Berliner Sternwarte und des 1874 gegründeten Astrophysikalischen Observatoriums Potsdam, das sich als erstes Institut weltweit ausdrücklich der Astrophysik widmete. Seit 1992 ist das AIP Mitglied der Leibniz-Gemeinschaft.

https://www.aip.de/de/aktuelles/scientific-highlights/lbt-polarisiert
https://lbtonews.blogspot.com/2017/10/the-lbt-gets-polarized-first-light-for.htm…
https://pepsi.aip.de
http://www.lbto.org

Media Contact

Dr. Janine Fohlmeister idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Funktionsweise von Adrenalin-bindendem Rezeptor entschlüsselt

Leipziger Biophysiker verfolgen Mechanismus der Signalübertragung im Körper nach. G-Protein-gekoppelte Rezeptoren (GPCR) sind im menschlichen Körper allgegenwärtig und an vielen komplexen Signalwegen beteiligt. Trotz ihrer Bedeutung für zahlreiche biologische Vorgänge…

Eine Alternative für die Manipulation von Quantenzuständen

Forschende der ETH Zürich haben gezeigt, dass man die Quantenzustände einzelner Elektronenspins durch Elektronenströme mit gleichmässig ausgerichteten Spins kontrollieren kann. Diese Methode könnte in Zukunft in elektronischen Schaltelementen eingesetzt werden….

Neue Einblicke in das Entstehen kleinster Wolkenpartikel in der Arktis

Ny-Ålesund (Spitzbergen). Mobile Messgeräte ermöglichen die Untersuchung von atmosphärischen Prozessen in höheren Luftschichten, die von klassischen Messstationen am Boden bisher nicht erfasst werden. Die luftgetragenen Flugsysteme leisten somit einen wichtigen…

Partner & Förderer