Beobachtung von Quantenzuständen im Gravitationsfeld der Erde gelungen

Internationales Forschungsteam aus Frankreich, Russland und der Universität Heidelberg stellt am 17. Januar 2002 neue Ergebnisse seiner Experimente in „Nature“ vor

Die Beobachtung von Quantenzuständen im Gravitationsfeld der Erde ist einem internationalen Forschungsteam aus Frankreich, Russland und der Universität Heidelberg gelungen. Dabei werden ultrakalte Neutronen auf einem horizontalen Neutronenspiegel unter dem Einfluss des Schwerefeldes der Erde mehrfach reflektiert. Aufgrund der Quantennatur des Neutrons sind nur diskrete Energieniveaus erlaubt. Diese Energieniveaus finden sich als Stufen in den Messdaten wieder, und Quantenphänomene können als Abweichung von der klassischen Erwartung sichtbar gemacht werden. Ergebnisse der Experimente werden am 17. Januar 2002 in „Nature“ veröffentlicht unter dem Titel „Quantum states of the neutron in the gravitational field“ von den Autoren V. V. Nesvizhevsky, H. G. Börner, A. K. Petukhov, H. Abele, S. Baeßler, F. J. Rueß, T. Stöferle, A. Westphal, A. M. Gagarsky, G. A. Petrov, A. V. Strelkov .

Die Gravitation ist wahrscheinlich die alltäglichste Kraft, die wir kennen. Das hier beschriebene Experiment ist vom Prinzip her ein Fallexperiment, wie es erstmals von Galilei durchgeführt wurde. Der Unterschied liegt in der Wahl des Fallobjekts. Heute ist das Objekt der Wahl ein äußerst energiearmes Neutron, die Fallhöhe beträgt einige Mikrometer und zur Beschreibung der Ergebnisse ist die Quantenmechanik notwendig.

Unter den bisher untersuchten Quantenphänomenen haben die meisten als Ursache elektromagnetische Kräfte, wie sie beispielsweise in der chemischen Bindung zu Tage treten. Die aktuellen Untersuchungen sind nun in einen neuen Energiebereich vorgestoßen. Aus physikalischer Sicht spielt die Gravitation nämlich eine Sonderrolle, da sie viele Zehnerpotenzen schwächer ist als alle anderen fundamentalen Kräfte der Natur.

Die Experimente wurden von einem internationalen Team aus dem Physikalischen Institut der Universität Heidelberg (H. Abele, S. Baeßler, N. Haverkamp, F. Rueß, T. Stöferle, A. Westphal), dem Institut Laue-Langevin (ILL) in Grenoble (V. Nesvizhevsky, H. Börner, A. Petukhov) und den Kernphysikinstituten St. Petersburg (A. Gagarsky, G. Petrov) und Dubna (A. Strelkov) in Russland durchgeführt. Die europäische Neutronenquelle am ILL stellt Neutronen für das durchgeführte Experiment zur Verfügung: Die im Kernspaltprozess erzeugten Neutronen sind ursprünglich alle sehr schnell, das heißt „heiß“ (mehr als zehn Milliarden Grad). Für das Experiment braucht man aber äußerst langsame, das heißt „ultrakalte“ Neutronen, die bis herab auf ein Tausendstel Grad über dem absoluten Temperaturnullpunkt gekühlt wurden. Diese Neutronen sind so energiearm, dass sie im Gegensatz zu schnelleren Neutronen an präzise polierten Spiegeloberflächen unter allen Auftreffwinkeln wie Licht an einem Spiegel reflektiert werden. Diese Neutronen werden nun vom Ausgang der Neutronenquelle für ultrakalte Neutronen über diesen Spiegel im Gravitationsfeld der Erde zu einem Neutrondetektor geführt.

Falls die Neutronen genügend Energie haben – für Hüpfhöhen oberhalb 50 Mikrometer über dem Spiegel -, so kann nicht zwischen klassischer Beschreibung und Quantenmechanik unterschieden werden und die Messdaten folgen der klassischen Erwartung. Werden die Hüpfhöhen von oben durch einen Neutronenabsorber beschränkt, dann macht sich für die entsprechenden kleinen Neutronenergien das Quantenregime bemerkbar. Im Unterschied zu Licht zeigen Neutronen nun Eigenschaften, wie sie nur durch die Gravitation im Zusammenspiel mit der Quantenmechanik hervorgerufen werden können: Ist der gewählte Energiebereich der Neutronen zu gering, so können keine Neutronen transmittiert werden. Licht jedoch, das nicht der Erdanziehung unterworfen ist, wird ungestört transmittiert.

Die Beobachtungen von Reflektionen von Atomen an magnetischen Spiegeln gelangen zum ersten Mal an der Yale University 1994 unter Mitarbeit von Hartmut Abele. Die Idee zu diesem Experiment reicht bis zu dieser Zeit zurück. Trotz der Erfolge mit Atomspiegeln war es einfacher, dieses Experiment mit Spiegeln für Neutronen aufgrund der ungleich besseren Reflexionseigenschaften für Neutronen herzustellen.

Das Experiment wurde gefördert vom Bundesforschungsministerium unter der Kontrakt-Nummer 06HD953 und von INTAS (International Association for the promotion of co-operation with scientists from the New Independent States of the former Soviet Union) unter Referenz 99-00705.

Rückfragen bitte an:
Priv.-Doz. Dr. Hartmut Abele
Physikalisches Institut der Universität Heidelberg
Philosophenweg 12, 69120 Heidelberg
Tel. 06221 549214, Fax 475733
abele@physi.uni-heidelberg.de

allgemeine Rückfragen von Journalisten auch an:
Dr. Michael Schwarz
Pressesprecher der Universität Heidelberg
Tel. 06221 542310, Fax 542317
michael.schwarz@rektorat.uni-heidelberg.de

Media Contact

Dr. Michael Schwarz idw

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Ein hochpräziser digitaler Zwilling der Erde

Ein di­gi­ta­ler Zwil­ling der Er­de soll künf­tig das Erd­sys­tem si­mu­lie­ren. Er könn­te die Po­li­tik da­bei un­ter­stüt­zen, ge­eig­ne­te Mass­nah­men zum Schutz vor Ex­tre­m­er­eig­nis­sen zu tref­fen. Ein Stra­te­gie­pa­pier von eu­ro­päi­schen For­schen­den und…

Experiment zeigt neue Optionen für Synchrotronlicht-Quellen auf

Beschleunigerphysik Ein internationales Team hat mit einem aufsehenerregenden Experiment gezeigt, wie vielfältig die Möglichkeiten von Synchrotronlicht-Quellen sind. Beschleunigerexperten des Helmholtz-Zentrums Berlin (HZB), der Physikalisch-Technischen Bundesanstalt (PTB) und der Tsinghua Universität…

Präzise Messwerte ermöglichen leichtere Bauteile

Für einen Kraftmesssensor, der bei Materialprüfungen unter Wasserstoffatmosphäre deutlich präzisere Festigkeitskennwerte liefert als bisherige Messmethoden, hat ein Forscherteam der Materialprüfungsanstalt (MPA) der Universität Stuttgart den „ThinKing“, ein Label der Landesagentur…

Partner & Förderer