Magnetismus in der Nanowelt verstehen: RUB-Forscher entwickeln neue Analyse-Methode

Die magnetischen Eigenschaften der Nanowelt untersuchen Physiker der Ruhr-Universität um Prof. Dr. Hartmut Zabel mit einer neuen experimentellen Methode. Die Forscher bestrahlen Proben mit Laser und zeichnen die Reflexion des Laserstrahls auf. Anhand der Auffächerung des reflektierten Strahls können sie mittels Fouriertransformation erstmals ganz genau berechnen, wie die Magnetisierung innerhalb einer magnetischen Nanoinsel verteilt ist.

Magnetische Nanoinseln sollen künftig zur Datenspeicherung dienen, wobei die magnetische Orientierung einem Bit mit dem Wert 0 oder 1 entspricht. Durch die präzise Berechnung lassen sich nun außerdem auch die Eigenschaften magnetischer Wirbel charakterisieren, die in besonders kleinen Nanomagnetinseln vorkommen. Sie verfügen neben ihrer Drehrichtung auch über eine Polarität, so dass in jeder von ihnen sogar mehr als ein Bit speicherbar werden könnte. Die Zeitschrift „Review of Scientific Instruments“ widmet der Methode ihre Titelstory.

Laserstrahl wird aufgefächert

Seit vielen Jahren tüftelt das Team von Prof. Zabel an einer Möglichkeit, mit Hilfe von Laserstrahlen das magnetische Verhalten von kleinsten magnetischen Strukturen zu untersuchen. „Eine bekannte optische Methode zur Untersuchung magnetischer Schichten ist der so genannte Kerr-Effekt“, erklärt Prof. Zabel die Grundlage der neuesten Arbeiten. „Dabei wird die Polarisationsebene von Licht durch Reflexion an einer magnetischen Schicht gedreht.“ Richtet man den Laserstrahl nun auf eine Probe mit tausenden gitterförmig angeordneten Nanomagnetinseln, wirkt sich jede dieser Inseln auf die Reflexion des Strahls aus: Der Strahl wird an der Probe aufgefächert in den Hauptstrahl und viele weitere Strahlen höherer Ordnung.

Genaueste Berechnungen

Ob diese Strahlen höherer Ordnung ebenfalls magnetische Informationen tragen und wenn ja welche, haben die Physiker nun untersucht. Zur Beschreibung des Effekts nutzten sie die Fouriertransformation, eine mathematische Funktion zur Berechnung des Frequenzspektrums von Signalen. Mittels dieser Berechnungen lässt sich die Magnetisierungsverteilung innerhalb einer einzigen magnetischen Nanoinsel ganz genau darstellen. Auch Fragen nach dem Domänenzustand innerhalb dieser Inseln und wie diese sich im Magnetfeld verändern, können mit Hilfe der Fouriermethode beantwortet werden. Man kann somit auch überprüfen, ob sich alle Inseln einer Probe exakt gleich verhalten – die Voraussetzung für die Nutzung als Speichermedium.

Eine Insel mit vier Bits

Bei sehr kleinen Magnetinseln stellt sich darüber hinaus ein magnetischer Wirbelzustand ein, der sich mit der neuen Methode nun erstmals genau charakterisieren lässt. Abgesehen von ihrer Drehrichtung verfügen diese Wirbel auch noch über eine Polarität, so dass in einer einzigen solchen Nanoinsel vier Bits abgespeichert werden könnten. „Interessant für uns ist zum Beispiel, wie der Wirbel sich in einem äußeren Magnetfeld verhält und ob man ihn in einem starken Magnetfeld vollständig zerstören kann“, so Prof. Zabel. „Wird dieser Wirbel wieder neu und spontan neu entstehen, wenn das Magnetfeld abgeschwächt wird? Was sind also die Magnetfelder für die Vernichtung und die Erzeugung von magnetischen Wirbeln? In welcher Richtung dreht sich der Wirbel, links oder rechts herum?“ Die neuen magneto-optischen Methoden können diese Fragen beantworten.

Titelaufnahme

A. Westphalen, M.-S. Lee, A. Remhof, and H. Zabel: Vector and Bragg MOKE for the analysis of nanostructured magnetic arrays. In: Review Scientific Instruments, 78, 121301 (2007) (invited review)

Weitere Informationen

Prof. Dr. Hartmut Zabel, Lehrstuhl für Experimentalphysik / Festkörperphysik der Ruhr-Universität Bochum, 44780 Bochum, NB 4 / 125, Tel. 0234/32-23649, Fax: 0234/32-14173, E-Mail hartmut.zabel@rub.de

Ansprechpartner für Medien

Dr. Josef König idw

Weitere Informationen:

http://www.ruhr-uni-bochum.de/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Screeningsystem für Lungengeräuschanalyse

Ein an der TU Graz entwickeltes Mehrkanal-Aufnahmegerät für krankhafte Lungengeräusche und die dazugehörige automatische Analyse der Geräusche könnten bestehende Screening-Methoden zur Früherkennung zum Beispiel von Covid-19-Infektionen unterstützen. Hierfür benötigt es…

Digitale Technologien für den Blick in den Boden

Weltbodentag Böden sind eine empfindliche und in Folge intensiver Landwirtschaft auch häufig strapazierte Ressource. Wissenschaftler*innen des ATB entwickeln daher digitale Lösungen für eine ressourcenschonende und umweltgerechte Bodenbewirtschaftung. Mit dem Weltbodentag…

Kartierung neuronaler Schaltkreise im sich entwickelnden Gehirn

Wie kann man neuronale Netze aufbauen, die komplexer sind als alles, was uns bis heute bekannt ist? Forscher am Max-Planck-Institut für Hirnforschung in Frankfurt am Main haben die Entwicklung von…

Partner & Förderer

Indem Sie die Website weiterhin nutzen, stimmen Sie der Verwendung von Cookies zu. mehr Informationen

Die Cookie-Einstellungen auf dieser Website sind so eingestellt, dass sie "Cookies zulassen", um Ihnen das bestmögliche Surferlebnis zu bieten. Wenn Sie diese Website weiterhin nutzen, ohne Ihre Cookie-Einstellungen zu ändern, oder wenn Sie unten auf "Akzeptieren" klicken, erklären Sie sich damit einverstanden.

schließen