Austauschwechselwirkung auf atomarer Skala quantifiziert

Skizze des Messprinzips und gemessenes Strombild Grafik: Nadine Hauptmann

Heutzutage wird intensiv daran geforscht, die einzelnen Bits in magnetischen Speichermedien auf wenige Nanometer oder sogar auf einzelne Atome herunterzuskalieren. Dafür ist es notwendig, magnetische Eigenschaften auf der atomaren Skala abzubilden.

Von zentraler Bedeutung für den Magnetismus ist die Austauschwechselwirkung, die Werner Heisenberg 1926 basierend auf der Quantenmechanik gefunden hat und die zur Ausrichtung von „atomaren Stabmagneten“ in magnetischen Materialien führt.

Forschende der Radboud Universität in Nijmegen und der Christian-Albrechts-Universität zu Kiel (CAU) haben nun mittels eines neuartigen Mikroskops und quantenmechanischen Rechnungen gezeigt, wie man diese Austauschwechselwirkungen auf der atomaren Skala an einer magnetischen Spiralstruktur messen und verstehen kann. Ihre gemeinsame Arbeit veröffentlichten sie in der renommierten Zeitschrift Nature Communications.

In den 1980er Jahren haben Gerd Binnig und Heinrich Rohrer am IBM Forschungszentrum Rüschlikon in Zürich das Rastertunnelmikroskop erfunden, wofür sie später mit dem Nobelpreis ausgezeichnet worden sind. In diesem Instrument wird eine atomar scharfe, metallische Spitze auf nur ungefähr einen halben Nanometer an eine leitende Oberfläche herangeführt.

Bei diesem winzigen Abstand fließt ein kleiner elektrischer sogenannter Tunnelstrom zwischen Spitze und Oberfläche. Durch das Rastern der Spitze über die Oberfläche kann die Oberfläche auf atomarer Skala abgebildet werden. Bei Verwendung einer magnetischen Spitze wird sogar die magnetische Struktur zugänglich.

Andererseits gibt es auch eine Kraftwirkung zwischen den Atomen der Spitze und denen der Oberfläche. Wenn Spitze und Oberfläche magnetisch sind, dann enthält diese Kraft auch einen Beitrag der Heisenbergschen Austauschwechselwirkung. Kürzlich haben Forschende um Professor Alexander Khajetoorians und Dr. Nadine Hauptmann von der niederländischen Radboud Universität in Nijmegen ein neuartiges Rastersondenmikroskop entwickelt, das es erlaubt, die Tunnelströme und die Kräfte auf magnetischen Oberflächen simultan zu messen.

In ihrer jetzt vorliegenden Arbeit zeigen die Forschenden der Radboud Universität zusammen mit Kolleginnen und Kollegen der CAU, wie man mittels dieses Mikroskops das Kraftfeld der Austauschwechselwirkung einer chiralen magnetischen Spiralstruktur mit ungeahnter Auflösung abbilden und quantifizieren kann . „Mit unserer neuen Technik können wir zeigen, dass die Kraftmessungen sogar noch sensitiver auf atomare Variationen der Austauschwechselwirkung und der lokalen chemischen Umgebung sind als der Tunnelstrom“, sagt Dr. Nadine Hauptmann.

Mit Hilfe von quantenmechanischen Rechnungen, die auf den Supercomputern des Norddeutschen Verbundes für Hoch- und Höchstleistungsrechnen (HLRN) durchgeführt worden sind, konnten die Kieler Physikerinnen und Physiker die experimentellen Beobachtungen erklären. „Unsere Rechnungen zeigen, dass das letzte magnetische Atom an der metallischen Spitze eine entscheidende Rolle für die gemessene Austauschwechselwirkung spielt und es eine Konkurrenz verschiedener Austauschmechanismen gibt“, erläutert Dr. Soumyajyoti Haldar von der CAU.

Mit ihrer Arbeit demonstrieren die Forschenden den neuesten Stand der Technik hinsichtlich der höchstauflösenden Abbildung komplexer magnetischer Strukturen und zeigen, dass man Austauschwechselwirkungen auf atomarer Skala quantifizieren kann. Zukünftig wird man mit dieser Technik einzelne magnetische Atome oder magnetische Moleküle studieren können.

Der Kieler Teil der Arbeit entstand im Rahmen des Sonderforschungsbereichs SFB 677 „Funktion durch Schalten“ der CAU.

Originalarbeit:
N. Hauptmann, S. Haldar, T.-C. Hung, W. Jolie, M. Gutzeit, D. Wegner, S. Heinze, and A. A. Khajetoorians, Quantifying exchange forces of a spin spiral on the atomic scale, Nature Communications, 05.03.2020 (2020). DOI: 10.1038/s41467-020-15024-2

Bilder zum Download stehen bereit.
https://www.uni-kiel.de/de/pressemitteilungen/2020/070-Spiralstruktur-1.png
Bildunterschrift: Skizze des Messprinzips (oberes Bild): eine atomar scharfe, magnetische Spitze (Dreieck mit grünem Pfeil) wird über eine magnetische Spiralstruktur (grüne und blaue Pfeile zeigen die Ausrichtung der atomaren Stabmagnete) einer Metalloberfläche gerastert (horizontaler gestrichelter Pfeil). Gemessenes Strombild (unteres Bild) (gelb-roter Farbverlauf, „current-based detection“) und Kraftbild (gelb-blauer Farbverlauf, „force-based detection“). Im Kraftbild sieht man die einzelnen Atome der Oberfläche, die aufgrund der magnetischen Struktur unterschiedlich erscheinen. Der Balken unten rechts gibt die Skala an (0,5 nm=0,5 Nanometer).
Copyright: Nadine Hauptmann

https://www.uni-kiel.de/de/pressemitteilungen/2020/070-Spiralstruktur-2.png
Bildunterschrift: Simulation der Austauschwechselwirkung zwischen der pyramidenförmigen magnetischen Spitze, die aus Eisenatomen (Fe) besteht und mit einem Manganatom (Mn) endet, und der Oberfläche. Die Oberfläche besteht aus einer einzelnen atomaren Lage aus Manganatomen (Mn), deren „atomarer Stabmagnet“ entweder nach oben (↑) oder nach unten (↓) zeigt. Die Manganlage befindet sich auf einer Wolframoberfläche (W(110)). Die roten und blauen Isoflächen zeigen die Wechselwirkung der Elektronendichten von Spitzen- und Oberflächenatomen.
Copyright: Soumyajyoti Haldar

Kontakt:
Dr. Nadine Hauptmann
Radboud University
Nijmegen
Phone: +31 2436 53183
E-Mail: n.hauptmann@science.ru.nl
Web: https://www.ru.nl/spm/

Prof. Dr. Stefan Heinze
Institut für Theoretische Physik und Astrophysik
Christian-Albrechts-Universität zu Kiel
Phone: +49 431 / 880-4127
E-Mail: heinze@theo-physik.uni-kiel.de
Web: www.itap.uni-kiel.de/theo-physik/heinze

Details, die nur Millionstel Millimeter groß sind: Damit beschäftigt sich der Forschungsschwerpunkt »Nanowissenschaften und Oberflächenforschung« (Kiel Nano, Surface and Interface Science – KiNSIS) an der Christian-Albrechts-Universität zu Kiel (CAU). Im Nanokosmos herrschen andere, nämlich quantenphysikalische, Gesetze als in der makroskopischen Welt. Durch eine intensive interdisziplinäre Zusammenarbeit zwischen Physik, Chemie, Ingenieurwissenschaften und Life Sciences zielt der Schwerpunkt darauf ab, die Systeme in dieser Dimension zu verstehen und die Erkenntnisse anwendungsbezogen umzusetzen. Molekulare Maschinen, neuartige Sensoren, bionische Materialien, Quantencomputer, fortschrittliche Therapien und vieles mehr können daraus entstehen. Mehr Informationen auf www.kinsis.uni-kiel.de

Christian-Albrechts-Universität zu Kiel
Presse, Kommunikation und Marketing, Dr. Boris Pawlowski
Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355
E-Mail: presse@uv.uni-kiel.de Internet: www.uni-kiel.de Twitter: www.twitter.com/kieluni
Facebook: www.facebook.com/kieluni Instagram: www.instagram.com/kieluni

Dr. Nadine Hauptmann
Radboud University
Nijmegen
Phone: +31 2436 53183
E-Mail: n.hauptmann@science.ru.nl
Web: https://www.ru.nl/spm/

Prof. Dr. Stefan Heinze
Institut für Theoretische Physik und Astrophysik
Christian-Albrechts-Universität zu Kiel
Phone: +49 431 / 880-4127
E-Mail: heinze@theo-physik.uni-kiel.de
Web: www.itap.uni-kiel.de/theo-physik/heinze

N. Hauptmann, S. Haldar, T.-C. Hung, W. Jolie, M. Gutzeit, D. Wegner, S. Heinze, and A. A. Khajetoorians, Quantifying exchange forces of a spin spiral on the atomic scale, Nature Communications, 05.03.2020 (2020). DOI: 10.1038/s41467-020-15024-2

http://www.uni-kiel.de/de/detailansicht/news/070-spiralstruktur

Media Contact

Dr. Boris Pawlowski Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Hybride Strom-Wärme-Erzeugung

Neuartiges Parabolrinnen-Solarmodul entsteht an TU Graz. Mittels Hohlspiegel auf Photovoltaik-Zellen gebündelte Sonnenstrahlen liefern nicht nur Strom, sondern auch thermische Energie zum Heizen oder Kühlen. Drei technologische Innovationen verringern die Kosten…

Geheimnissen unserer Galaxie auf der Spur

Benachbarte Sternhaufen bewegen sich als Welle. Neue Ergebnisse deuten darauf hin, dass es keine signifikante Menge an dunkler Materie in unserer Nachbarschaft gibt. Erst vor wenigen Jahren entdeckte ein internationales…

Innovative Computertomographie

…verbessert Beurteilung der koronaren Herzkrankheit. Studie der Universitätsmedizin Mainz zeigt: Schweregrad der Erkrankung bei über 50 Prozent der Patient:innen mit Standardverfahren zu hoch eingestuft. Forschende der Universitätsmedizin Mainz haben gezeigt,…

Partner & Förderer