Auf Linie gebracht

Experimenteller Aufbau im Laserlabor. (Bild: Maximilian Schlosser)

FAU-Physiker führen Elektronenpulse kontrolliert durch Nanostrukturkanal.

Teilchenbeschleuniger sind unverzichtbare Werkzeuge in Forschungsbereichen wie Biologie, Materialwissenschaft und Teilchenphysik. Forschende sind ständig auf der Suche nach leistungsfähigeren Verfahren, um Teilchen zu beschleunigen, um bestehende Anlagen zu verbessern – und so die Kapazität für Versuche zu erhöhen. Eine solche leistungsfähigere Technologie ist die dielektrische Laserbeschleunigung. Hier werden Teilchen im optischen Nahfeld beschleunigt, das entsteht, wenn ultrakurze Laserpulse auf ein photonisches Gitter fokussiert werden.

Wissenschaftlern vom Lehrstuhl für Laserphysik der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) ist es gelungen, mit dieser Methode einen entscheidenden Baustein eines jeden Teilchenbeschleunigers zu demonstrieren: die Führung der Elektronen im Vakuumkanal. Die Grundlagen des photonischen Nanostrukturkanals wurde beim Kooperationspartner TU Darmstadt entwickelt. Ihre Ergebnisse haben sie nun gemeinsam in Nature publiziert.

Nicht den Fokus verlieren

Da geladene Teilchen dazu neigen, sich bei ihrer Ausbreitung immer weiter voneinander zu entfernen, stehen alle Beschleunigertechnologien vor der Herausforderung, die Teilchen – sowohl räumlich als auch zeitlich – in den gewünschten Grenzen zu halten. Das führt zu Anlagen, die bis zu zehn Kilometer lang sein können – und Jahre in der Vorbereitung und Konstruktion benötigen sowie große finanzielle Investitionen beinhalten. Die dielektrische Laserbeschleunigung (DLA, aus dem Englischen: dielectric laser acceleration) macht sich die ultraschnelle Lasertechnologie und die Fortschritte in der Halbleiterfertigung zunutze, um diese Beschleuniger potenziell auf einige Millimeter oder Zentimeter zu miniaturisieren.
Ein vielversprechender Ansatz: In Experimenten konnte bereits gezeigt werden, dass die DLA den Stand der Technik um mindestens das 35-fache übertrifft. Das bedeutet, dass die Länge eines potenziellen Beschleunigers um den gleichen Faktor geschrumpft werden kann. Bis jetzt war es jedoch unklar, ob diese Zahlen auf immer längere Strukturen skaliert werden können.

Nun hat ein Team von Physikern um Prof. Dr. Peter Hommelhoff vom Lehrstuhl für Laserphysik der FAU einen großen Schritt gemacht, um DLA für den Einsatz in vollwertigen Beschleunigeranwendungen zu adaptieren. In ihrer Arbeit demonstrieren sie zum ersten Mal ein Schema, um Elektronenpulse über lange Strecken zu führen.

Alles eine Frage der Technik

Das Schema, bekannt als „Alternating Phase Focusing“ (APF), ist eine Methode aus den frühen Tagen der Beschleunigertheorie. Die Fokussierung geladener Teilchen in allen drei Dimensionen gleichzeitig – Breite, Höhe und Tiefe – ist durch ein fundamentales Gesetz der Physik unmöglich. Dies kann jedoch umgangen werden, indem die Elektronen abwechselnd in verschiedenen Dimensionen fokussiert werden. Indem die Elektronen mit dem Laserstrahl zunächst quer fokussiert werden, dann durch einen kurzen „Drift“-Abschnitt gleiten, in dem keine Kräfte auf sie einwirken, und letztlich längs beschleunigt werden, lassen sie sich zielgerichtet lenken.

Im Experiment haben die Wissenschaftler von FAU und TUDa diesen Aufbau durch den Einbau einer Kolonnade aus ovalen Säulen mit kurzen Lücken in regelmäßigen Abständen realisiert, die verschiedene Makrozellen ergeben. Jede Makrozelle wirkt auf die Teilchen entweder fokussierend oder defokussierend, abhängig von der Verzögerung zwischen dem antreibenden Laser, dem Elektron und dem Spalt, der die Driftstrecke bildet. Die Beherrschung dieses Aufbaus ermöglicht die präzise Phasenraumsteuerung des Elektronenpulses auf der optischen beziehungsweise Femtosekunden-Ultrazeitskala (eine Femtosekunde entspricht dem millionsten Teil einer milliardstel Sekunde). Im Experiment wird die erfolgreiche Führung als Anstieg des Strahlstroms durch die Struktur sichtbar, wenn sie mit dem Laser beleuchtet wird. Wenn kein Laser mit der Struktur interagiert, werden die Elektronen nicht geführt und stürzen allmählich in die Kanalwände. „Das ist sehr spannend“, sagt FAU-Physiker Johannes Illmer, Co-Autor der Veröffentlichung. „Zum Vergleich: Der Large Hadron Collider am CERN verwendet 23 solcher Zellen in einem 2450 Meter langen Bogen. Unsere Nanostruktur umfasst fünf solcher Zellen und das alles in nur 80 Mikrometer.“

Wann kommt der erste DLA-Beschleuniger?

„Die Ergebnisse sind zwar enorm wichtig, stellen aber für uns nur einen Zwischenschritt dar“, erklärt Dr. Roy Shiloh, „und der Weg, der vor uns liegt, ist klar: Wir wollen einen vollwertigen Beschleuniger – auf einem Chip.“

Die Arbeit in diesem Gebiet wird von der internationalen „Accelerator on a chip“(ACHIP)-Kollaboration vorangetrieben, in der die AutorenMitglieder sind. In theoretischen Arbeiten hat die Kollaboration bereits gezeigt, dass APF angepasst werden kann, um eine Beschleunigung von Elektronenstrahlen zu erreichen. Komplexere, dreidimensionale APF-Schemata könnten daher die Grundlage für die zukünftige Teilchenbeschleunigertechnologie bilden. „Wir müssen die Elektronen in allen drei Dimensionen einfangen, um sie verlustfrei über noch längere Strecken zu beschleunigen“, sagt Dr. Uwe Niedermayer, Co-Autor der Veröffentlichung von der TU Darmstadt.

Die Wissenschaftler haben ihre Ergebnisse in Nature veröffentlicht. Finanziert wurde die Arbeit von der Gordon and Betty Moore Stiftung (#GBMF4744), den ERC-Projekten NearFieldAtto (#616823) und AccelOnChip (#884217) sowie den BMBF-Projekten 05K19WEB und 05K19RDE.

Wissenschaftliche Ansprechpartner:

Lehrstuhl für Laserphysik:

Dr. Roy Shiloh
Tel.: 09131/85-27211
roy.shiloh@fau.de

Johannes Illmer M.Sc.
Tel.: 09131/85-27211
johannes.i.illmer@fau.de

Prof. Dr. Peter Hommelhoff
Tel.: 09131/85-27090
peter.hommelhoff@fau.de

Originalpublikation:

Electron phase space control in photonic chip-based particle acceleration“, Nature doi 10.1038/s41586-021-03812-9

https://www.fau.de/2021/09/news/wissenschaft/fau-physiker-fuehren-elektronenpulse-kontrolliert-durch-nanostrukturkanal/

Media Contact

Blandina Mangelkramer Presse und Kommunikation
Friedrich-Alexander-Universität Erlangen-Nürnberg

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Entdeckung wirft neues Licht auf Legierungen

Neuzugang im Molekülzoo: Eine Forschungsgruppe aus der Marburger Chemie hat herausgefunden, wie Cluster-Verbindungen aus drei Typen von Metallatomen zustande kommen. Dabei entdeckte das Team, dass ein exotisches Nebenprodukt entsteht, das…

Bunt, klein, überall

Flensburger Phänomenta und IOW laden zur Finissage der Mikroplastik-Wanderausstellung ein. Wie kommt Mikroplastik in die Ostsee und wie erforscht man das? Damit beschäftigt sich die Ausstellung „Bunt, klein, überall. Mikroplastik…

Mit optischer Pinzette den Lebenszyklus der Zelle erfühlen

Forschungsteam beobachtet veränderte Strukturen im Inneren. Menschen sind eine Ansammlung von Billionen lebender Zellen, die alle aus einer einzigen befruchteten Eizelle hervorgegangen sind. Die Zellteilung ist eine der grundlegendsten Prozesse…

Partner & Förderer