„Atomarer Walzer“ zur Atom-Manipulation durch Modellierung entdeckt

Indirekter Austauschmechanismus für die Elektronenstrahlmanipulation von Bismut- oder Antimon-Dotierstoffen in Silizium auf der Basis von Computersimulationen. Die rote Kugel ist ein Bismut-Atom, während die gelbe und die grüne Kugel seine direkten Silizium-Nachbaratome bzw. deren Nachbaratome darstellen. (© Toma Susi & Alexander Markevich / University of Vienna, Andrew R. Lupini)

Forscher*innen an der Fakultät für Physik der Universität Wien in Zusammenarbeit mit Kolleg*innen vom Oak Ridge National Laboratory in den USA haben einen zerstörungsfreien Mechanismus zur Manipulation von Dotieratomen in Silizium mittels fokussierter Elektronenbestrahlung entdeckt. In diesem neuartigen indirekten Austauschprozess sind nicht nur ein, sondern zwei benachbarte Siliziumatome an einem koordinierten atomaren „Walzer“ beteiligt, der einen Weg zur Herstellung von Festkörper-Qubits eröffnen könnte. Die Ergebnisse erscheinen im Journal of Physical Chemistry.

Die Konstruktion von Materialien auf atomarer Ebene ist ein ultimatives Ziel der Nanotechnologie. Bekannte Beispiele für die Manipulation von Atomen mithilfe der Rastertunnelmikroskopie reichen von der Konstruktion von Quantenkorallen bis hin zu wiederbeschreibbaren atomaren Speichern. Während etablierte Rastersonden-Techniken leistungsfähige Werkzeuge für die Manipulation von Oberflächenatomen sind, können sie das Innere des Materials nicht erreichen, da der Kontakt der Probe mit einer physischen Spitze sowie Betrieb und Lagerung bei kryogenen Temperaturen erforderlich sind.

Jüngste Fortschritte in der Rastertransmissionselektronenmikroskopie (STEM) haben das Interesse an der Verwendung eines Elektronenstrahls zur Atommanipulation geweckt. Wien hat sich zu einem der weltweit führenden Zentren dieser Forschung entwickelt. „Die einzigartige Stärke dieser Technik ist die Fähigkeit, nicht nur Oberflächenatome, sondern auch Fremdatome innerhalb dünner Volumenkristalle zu erreichen. Dies ist nicht nur eine theoretische Möglichkeit: Der erste Grundsatzbeweis der möglichen Manipulation von Wismut-Dotieratomen in Silizium wurde kürzlich von unseren US-Kolleg*innen erbracht“, erklärt Toma Susi von der Universität Wien.

Die neue gemeinsame Studie beinhaltet eine systematische Modellierung der Elektronenstrahl-Manipulation von Donorelementen der Gruppe V in Silizium. Entscheidend ist, dass das Wiener Team einen neuartigen Mechanismus – als indirekter Austausch bezeichnet – aufdeckte, bei dem nicht ein, sondern zwei benachbarte Siliziumatome an einem koordinierten atomaren „Walzer“ beteiligt sind. Dieser erklärt, wie Elektronenstöße diese Dotieratome innerhalb des Siliziumgitters bewegen können. „Der Mechanismus funktioniert allerdings nur bei den beiden schwereren Donorelementen Wismut und Antimon, ist aber zerstörungsfrei, da keine Atome aus dem Gitter entfernt werden müssen“, ergänzt Alexander Markevich.

Weiterhin konnte das Team erstmals experimentell die Manipulation von Antimon-Fremdatomen in Silizium mittels STEM demonstrieren. Die präzise Positionierung von Dotieratomen innerhalb von Kristallgittern könnte neuartige Anwendungen in Bereichen wie Festkörpersensorik und Quantencomputern ermöglichen. Dies könnte spannende Auswirkungen haben, wie Susi abschließend feststellt: „Erst kürzlich wurden Antimon-Dotieratome in Silizium als vielversprechende Kandidaten für Festkörper-Kernspin-Qubits vorgeschlagen und unsere Arbeit könnte einen Weg für deren deterministische Herstellung eröffnen.“

Das Wiener Team wurde vom Europäischen Forschungsrat (ERC) im Rahmen des Forschungs- und Innovationsprogramms Horizon 2020 der Europäischen Union unterstützt (Grant agreement No. 756277-ATMEN), das Team des Oak Ridge National Laboratory vom U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Materials Sciences and Engineering sowie vom ORNL Laboratory Directed Research and Development Program.

Publikation in Journal of Physical Chemistry:
Mechanism of Electron-Beam Manipulation of Single-Dopant Atoms in Silicon: Alexander Markevich, Bethany M. Hudak, Jacob Madsen, Jiaming Song, Paul C. Snijders, Andrew R. Lupini, Toma Susi. Journal of Physical Chemistry C 125, 29, 16041–16048 (2021). DOI: 10.1021/acs.jpcc.1c03549 (CC-BY)

Wissenschaftliche Ansprechpartner:

Ass.-Prof. Dr. Toma Susi
Physik Nanostrukturierter Materialien Fakultät für Physik
Universität Wien
1090 – Wien, Boltzmanngasse 5
+43-1-4277-728 55
toma.susi@univie.ac.at

http://www.univie.ac.at/

Media Contact

Alexandra Frey Öffentlichkeitsarbeit
Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer