26AlF – die erste Entdeckung eines radioaktiven Moleküls im Weltraum

Moleküle im Gasnebel um den Stern CK Vul: Kation Diazenyl (N2H+) in Blau, Methanol (CH3OH) in Rot und die Emission von AlF in Zyan/Grün und Gelb, radioaktives 26AlF tritt nur im innersten Teil auf. T. Kamiński

Der veränderliche Stern CK Vulpeculae (CK Vul) ist als Ort eines stellaren Helligkeitsausbruchs, einer sogenannten Nova, bekannt, die von europäischen Astronomen im 17. Jahrhundert in Richtung des Sternbilds “Vulpecula” (das Füchschen) beobachtet werden konnte. Die Nova Vul 1670 war leicht mit bloßem Auge zu erkennen und zeigte deutliche Helligkeitsschwankungen über die beiden folgenden Jahre.

Es dauerte dann lange Zeit, bis zum Jahr 2013, bevor ein Team von Astronomen durch Beobachtungen mit dem “Atacama Pathfinder Experiment” (APEX), molekulares Gas mit einzigartiger Isotopenzusammensetzung im Überrest dieses Ausbruchs nachweisen konnte. Die Analyse dieses überraschenden Befundes deutete darauf hin, dass ein sehr seltenes Ereignis dafür die Ursache war, nämlich der Zusammenstoß und die anschließende Verschmelzung zweier Einzelsterne.

Die Kollision erzeugte ein Objekt, das man auch als “Roter Transient” oder “Rote Nova” bezeichnet, eine erst seit kurzem definierte neue Klasse eruptiver Sterne.

Die Beobachtung des Isotops 26Al ermöglicht Einblicke in den Verschmelzungsprozess von CK Vul und zeigt, dass selbst tief im Inneren liegende Schichten des Sterns bei solch einer Kollision zutage treten können. Darüber hinaus ermöglichten es die gefundenen Resultate, die Natur des zugrunde liegenden Doppelsternsystems genauer einzugrenzen.

Es handelt sich dabei um ein sogenanntes “Low-mass Binary System” mit einer Komponente von 0,8-2,5 Sonnenmassen, die sich als “Roter Riese” in einem bereits fortgeschrittenen Stadium ihrer Sternentwicklung befand.

Der erste direkte Nachweis von 26Al in einem sternartigen Objekt ist auch in einem größeren Zusammenhang für die chemische Entwicklung der Milchstraße von Bedeutung. Zum ersten Mal konnte eine aktive Quelle für die Erzeugung des radioaktiven Nuklids 26Al durch Beobachtungen belegt werden. Es ist bereits seit Jahrzehnten bekannt, dass ca. zwei Sonnenmassen von 26Al über die Milchstraße verteilt sind. Obwohl über ihre Gammastrahlung nachweisbar, ist die genaue Herkunft dieser radioaktiven Wolke bisher unbekannt.

Mit den aktuellen Abschätzungen über die Masse von 26Al in CK Vul und der Anzahl von Sternkollisionen in der Milchstraße erscheint es sehr unwahrscheinlich, dass die Kollisionen alleine verantwortlich sind für die Erzeugung dieses radioaktiven Materials in der Milchstraße. Allerdings könnte die tatsächliche Masse von 26Al in atomarer Form in CK Vul und anderen Überresten solcher Sternverschmelzungen deutlich höher sein. Vielleicht ist auch die derzeit angenommene Verschmelzungsrate unterschätzt, so dass die Rolle der Sternverschmelzungen bei der Erzeugung radioaktiven Materials vielleicht nicht vernachlässigt werden sollte.

Durch die aktuellen Beobachtungen ist eine völlig neue Art von Objekten für die Erzeugung von 26Al in der Milchstraße in den Fokus gerückt. Sie zeigen außerdem, dass moderne Radiointerferometer wie ALMA bei Millimeterwellenlängen zur Suche nach dem Ursprung des radioaktiven 26Al in der Milchstraße eingesetzt werden können – und das mit wesentlich höherer Winkelauflösung als bei Gammastrahlungs-Observatorien.

Ein anderer wichtiger Aspekt der vorliegenden Arbeit ist, dass die Linienpositionen im Spektrum zunächst von Molekülspektroskopikern berechnet wurden, die als Ko-Autoren in der Veröffentlichung vertreten sind. Die Darstellung von Material mit darin enthaltenem
26Al durch direkte Labormessungen würde extrem herausfordernd und auch teuer, so dass die Berechnungen den einzig gangbaren Weg darstellen. Die beobachteten Linienübergänge stimmen perfekt mit den aus den Berechnungen vorhergesagten überein.

Auch in Zukunft bleibt CK Vul eine rätselhafte Quelle am Himmel und stellt einen Tummelplatz für neue astronomische Entdeckungen dar.

Bei der Entdeckung waren folgende Radioteleskope und Teleskopnetzwerke beteiligt: APEX, IRAM-30m, NOEMA, ALMA, and SMA. Die wichtigsten Beobachtungen für das Projekt wurden dabei vom PdbI/NOEMA-Interferometer sowie vom Teleskopnetzwerk ALMA in Chile beigesteuert, unter anderem mit dem soeben erst in Betrieb gegangenen Band-5-Empfangssystem für 1,4 bis 1,8 mm Wellenlänge.

Das Forscherteam umfasst Tomasz Kamiński, Romuald Tylenda, Karl M. Menten, Amanda Karakas, Jan Martin Winters, Alexander A. Breier, Ka Tat Wong, Thomas F. Giesen und Nimesh A. Patel.

Karl M. Menten, Direktor am MPIfR und Leiter der “Millimeter- und Submillimeter-Astronomie”-Forschungsabteilung des Instituts, ist Ko-Autor der Veröffentlichung.

Prof. Dr. Karl M. Menten
Direktor und Leiter der Forschungsabteilung “Millimeter- und Submillimeterastronomie”
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-297
E-mail: kmenten@mpifr-bonn.mpg.de

Dr. Tomasz Kaminski
Harvard-Smithsonian Centre for Astrophysics (CfA)
Fon: +1 617-495-7259
E-mail: tomasz.kaminski@cfa.harvard.edu

Tomasz Kamiński et al.: Astronomical detection of a radioactive molecule 26AlF in a remnant of an ancient explosion, Advanced Online Publication (AOP), Nature Astronomy, 30. Juli 2018 (dx.doi.org/10.1038/s41550-018-0541-x).

https://www.mpifr-bonn.mpg.de/pressemeldungen/2018/10

Media Contact

Norbert Junkes Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Graphen-Forschung: Zahlreiche Produkte, keine akuten Gefahren

«Graphene Flagship» nach zehn Jahren erfolgreich abgeschlossen. Die grösste je auf die Beine gestellte EU-Forschungsinitiative ist erfolgreich zu Ende gegangen: Ende letzten Jahres wurde das «Graphene Flagship» offiziell abgeschlossen. Daran…

Wie Bremsen im Gehirn gelockert werden können

Forschende lokalisieren gestörte Nervenbahnen mithilfe der tiefen Hirnstimulation. Funktionieren bestimmte Verbindungen im Gehirn nicht richtig, können Erkrankungen wie Parkinson, Dystonie, Zwangsstörung oder Tourette die Folge sein. Eine gezielte Stimulation von…

Wärmewende auf der GeoTHERM erleben

Als Innovationspartner in Sachen Wärmewende für Industrie und Kommunen stellt sich das Fraunhofer IEG auf der internationalen Fachmesse GeoTHERM vor. Auf seiner Ausstellungsfläche in Offenburg stellt es ab dem 29….

Partner & Förderer