Die selbstreinigende Wandfarbe

Das Prinzip: Vom Abfall zur selbstreinigenden Farbe
(c) TU Wien

Ein Durchbruch in der Katalyse-Forschung macht es möglich: Eine neue Wandfarbe kann sich durch Sonneneinstrahlung selbst reinigen und Schadstoffe aus der Luft chemisch abbauen.

Schöne weiße Wandfarbe bleibt meistens nicht für immer schön und weiß. Oft lagern sich verschiedene Substanzen aus der Luft an der Oberfläche an. Das kann durchaus ein gewünschter Effekt sein, weil dadurch die Luft kurzzeitig sauberer wird – doch im Lauf der Zeit verfärbt sich die Farbe und muss erneuert werden.

Qaisar Maqbool und Günther Rupprechter - mit dem Coverbild zu ihrer Forschungsarbeit
Qaisar Maqbool und Günther Rupprechter – mit dem Coverbild zu ihrer Forschungsarbeit. (c) TU Wien

Einem Forschungsteam der TU Wien und der Università Politecnica delle Marche (Italien) gelang es nun, spezielle Titanoxid-Nanopartikel zu entwickeln, die man ganz gewöhnlicher, kommerziell erhältlicher Wandfarbe hinzufügen kann, um ihr Selbstreinigungskräfte zu verleihen: Die Partikel sind photokatalytisch aktiv, sie können das Licht der Sonne nutzen, um Substanzen aus der Luft nicht nur zu binden, sondern anschließend auch zu zerlegen. Die Wand macht die Luft sauberer – und reinigt sich gleichzeitig selber. Als Ausgangsmaterial für die neue Wandfarbe verwendete man Abfall: Metallspäne, die sonst weggeworfen werden müssten, und getrocknete Olivenblätter.

Modifiziertes Titanoxid in der Wandfarbe

In der Raumluft kommen ganz unterschiedliche Schadstoffe vor – von Rückständen von Putzmitteln und Hygieneartikeln bis hin zu Molekülen, die beim Kochen entstehen, oder die von Materialien wie Leder abgegeben werden. In manchen Fällen kann das zu Beschwerden führen, man spricht dann vom „Sick Building Syndrom“.

„Schon seit Jahren versucht man, spezielle Wandfarben zum Reinigen der Luft zu verwenden“, sagt Prof. Günther Rupprechter vom Institut für Materialchemie der TU Wien. „Titanoxid-Nanopartikel sind in diesem Zusammenhang besonders interessant. Sie können ein breites Spektrum von Schadstoffen binden und abbauen.“

Doch wenn man einfach gewöhnliche Titanoxid-Nanopartikel der Farbe beimischt, beeinträchtigt das die Haltbarkeit der Farbe: Genau wie Schadstoffe von den Partikeln zersetzt werden, können diese auch die Farbe selbst instabil und rissig machen. Im schlimmsten Fall können dann sogar flüchtige organische Moleküle freigesetzt werden, die ihrerseits gesundheitsschädlich sein können. Nach einer gewissen Zeit wird die Farbschicht grau und unansehnlich, spätestens dann muss sie erneuert werden.

Selbstreinigung durch Licht

Die Nanopartikel können sich allerdings selbst reinigen, wenn sie mit UV-Licht bestrahlt werden. Titanoxid ist nämlich ein sogenannter Photokatalysator – ein Material, das bei geeigneter Lichteinstrahlung chemische Reaktionen ermöglicht. Die UV-Strahlung lässt in den Partikeln freie Ladungsträger entstehen, mit deren Hilfe die eingefangenen Schadstoffe aus der Luft in kleine Teile zerlegt und wieder abgegeben werden können. So werden die Schadstoffe unschädlich gemacht, bleiben aber nicht dauerhaft an der Wandfarbe angelagert. Die Wandfarbe bleibt langfristig stabil.

In der Praxis nützt das allerdings wenig – schließlich wäre es äußerst aufwändig, die Wand immer wieder mit intensivem UV-Licht zu bestrahlen, um den Selbstreinigungsprozess aufrecht zu erhalten. „Unser Ziel war es daher, diese Partikel so zu verändern, dass der photokatalytische Effekt auch durch gewöhnliches Sonnenlicht hervorgerufen werden kann“, erklärt Günther Rupprechter.

Das gelingt, indem man den Titanoxid-Nanopartikeln bestimmte zusätzliche Atome beimischt, etwa Phosphor, Stickstoff und Kohlenstoff. Dadurch ändern sich die Lichtfrequenzen, die von den Partikeln aufgenommen werden können, statt nur durch UV-Licht wird die Photokatalyse dann auch durch gewöhnliches sichtbares Licht ausgelöst.

96% Schadstoffentfernung

„Wir haben dieses Phänomen nun sehr detailliert mit einer Vielzahl unterschiedlicher Oberflächen- und Nanopartikel-Analysemethoden untersucht“, sagt Qaisar Maqbool, der Erstautor der Studie. „So konnten wir zeigen, wie sich diese Partikel genau verhalten, vor und nachdem sie der Wandfarbe zugefügt wurden.“

Das Forschungsteam mischte die modifizierten Titanoxid-Partikel ganz gewöhnlicher, handelsüblicher Wandfarbe bei und überspülte eine damit bemalte Oberfläche mit einer schadstoffhaltigen Lösung. Durch Sonnenlicht konnten anschließend 96% der Schadstoffe abgebaut werden. Die Farbe selbst verändert sich dabei nicht – weil die Schadstoffe nicht bloß gebunden, sondern mit Hilfe von Sonneneinstrahlung auch zerlegt werden.

Müll als Rohstoff

Für den kommerziellen Erfolg solcher Farben ist es auch wichtig, dass keine allzu teuren Grundstoffe notwendig sind. „In der Katalyse verwendet man beispielsweise Edelmetalle wie Platin oder Gold. In unserem Fall reichen aber Elemente, die überall leicht verfügbar sind: Um Phosphor, Stickstoff und Kohlenstoff zu gewinnen, haben wir getrocknetes Laub von Olivenbäumen verwendet, das Titan für die Titanoxid-Partikel haben wir aus Metallabfällen gewonnen, die normalerweise einfach weggeworfen werden“, sagt Günther Rupprechter.

Die neuartige Wandfarbe vereint also mehrere Vorteile gleichzeitig: Sie kann Schadstoffe aus der Luft unschädlich machen, sie hält länger als andere Farben – und sie ist sogar auch noch rohstoffschonend in der Herstellung und kann aus recycelten Materialien gewonnen werden. Weitere Experimente dazu werden durchgeführt, eine Kommerzialisierung der Wandfarbe ist geplant.

Wissenschaftliche Ansprechpartner:

Prof. Günther Rupprechter
Institut für Materialchemie
TU Wien
+43 1 58801 165100
guenther.rupprechter@tuwien.ac.at
x: @Rupprechter_Lab

Originalpublikation:

Highly stable self-cleaning paints based on waste-valorized PNC-doped TiO2 nanoparticles
Qaisar Maqbool, Orlando Favoni, Thomas Wicht, Simona Sabbatini, Michael Stöger-Pollach, Maria Letizia Ruello, Francesca Tittarelli, Günther Rupprechter
ACS Catalysis, (2024)
https://doi.org/10.1021/acscatal.3c06203

Aussender

Dr. Florian Aigner
PR und Marketing
Technische Universität Wien
+43 1 58801 41027
florian.aigner@tuwien.ac.at 

https://www.tuwien.at/tu-wien/aktuelles/news/news/die-selbstreinigende-wandfarbe

Media Contact

Dr. Florian Aigner PR und Marketing
Technische Universität Wien

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz

Dieser Themenkomplex befasst sich primär mit den Wechselbeziehungen zwischen Organismen und den auf sie wirkenden Umweltfaktoren, aber auch im weiteren Sinn zwischen einzelnen unbelebten Umweltfaktoren.

Der innovations report bietet Ihnen interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Klimaschutz, Landschaftsschutzgebiete, Ökosysteme, Naturparks sowie zu Untersuchungen der Leistungsfähigkeit des Naturhaushaltes.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer