3D-gedruckte Einlagen messen Sohlendruck direkt im Schuh

Die Einlagesohlen werden mitsamt den integrierten Sensoren und Leiterbahnen in nur einem Arbeitsgang auf einem 3D-​Drucker hergestellt.
(c) Marco Binelli / ETH Zürich

Forschende der ETH Zürich, der Empa und der EPFL entwickeln eine 3D-​gedruckte Einlegesohle mit integrierten Sensoren, die das Messen des Sohlendrucks im Schuh und damit während beliebiger Aktivitäten erlaubt. Dies hilft Athlet:innen oder Patient:innen, Leistungs-​ und Therapiefortschritte zu bestimmen.

Im Spitzensport entscheiden manchmal Sekundenbruchteile zwischen Sieg und Niederlage. Um ihre Leistungen zu optimieren, nutzen Sportler:innen deshalb unter anderem massgefertigte Einlagesohlen. Aber auch Menschen mit Schmerzen des Bewegungsapparates greifen auf Einlagen zurück, um ihre Beschwerden zu bekämpfen.

Um solche Einlagen exakt anzupassen, müssen Fachleute zuerst ein Druckprofil der Füsse erstellen. Dazu müssen Sportler:innen oder Patient:innen barfuss über druckempfindliche Matten gehen, wo sie ihren individuellen Fussabdruck hinterlassen. Aufgrund dieses Druckprofils erstellen Orthopäd:innen dann in Handarbeit individuell passende Einlagen. Optimierungen und Anpassungen brauchen aber Zeit. Ein weiterer Nachteil: Die druckempfindlichen Matten lassen nur Messungen in einem begrenzten Raum zu, aber nicht während des Trainings oder Outdoor-​Aktivitäten.

Nun könnte aber eine Erfindung eines Forschungsteams der ETH Zürich, der Empa und der EPFL die Situation deutlich verbessern: Die Forschenden fabrizierten nämlich mittels 3D-​Druck eine massgeschneiderte Einlagesohle mit integrierten Drucksensoren. Damit kann der Fusssohlendruck direkt im Schuh bei verschiedenen Aktivitäten gemessen werden.

«Man kann anhand der ermittelten Druckmuster erkennen, ob jemand geht, läuft, eine Treppe hochsteigt oder gar eine schwere Last am Rücken trägt. Dann verlagert sich der Druck nämlich mehr auf die Ferse», erklärt Co-​Projektleiter Gilberto Siqueira, Oberassistent an der Empa und am Labor für komplexe Materialien der ETH Zürich. Mühsame Mattentests sind damit passé. Die Erfindung wurde vor kurzem in der Fachzeitschrift Scientific Reports vorgestellt.

Ein Gerät, mehrere Tinten

Dabei ist aber nicht nur die Benutzung, sondern auch die Herstellung der Einlagesohlen einfach. Samt den integrierten Sensoren und Leiterbahnen werden sie in nur einem Arbeitsgang und nur auf einem 3D-​Drucker hergestellt, einem sogenannten Extruder.

Zum Drucken verwenden die Forschenden verschiedene Tinten, deren Rezepturen sie eigens für diese Anwendung entwickelt haben. So nutzen die Materialwissenschaftler:innen als Grundlage der Einlagesohle ein Gemisch aus Silikon und Zellulose-​Nanopartikeln.

Auf diese erste Schicht drucken sie dann mit einer leitfähigen silberhaltigen Tinte die Leiterbahnen, und auf diese an einzelnen Stellen – mit russhaltiger Tinte – die Sensoren. Die Verteilung der Sensoren ist dabei nicht zufällig: Sie werden genau dort platziert, wo der Fusssohlendruck am stärksten ist. Um die Leiterbahnen und die Sensoren zu schützen, überziehen die Forschenden diese mit einer weiteren Silikonschicht.

Eine anfängliche Schwierigkeit bestand darin, eine gute Haftung der unterschiedlichen Materialschichten zu erzielen. Die Forschenden behandelten deshalb die Oberfläche der Silikonschichten mit einem heissen Plasma.

Die Sensoren sind sogenannte Piezoelemente, die mechanischen Druck in elektrische Signale umwandeln. Sie messen Normal-​ und Scherkräfte. Die Forschenden haben auch eine Schnittstelle zum Auslesen der generierten Daten in die Sohle eingebaut.

Laufdaten bald drahtlos auslesen

Tests zeigten den Forschenden, dass die additiv gefertigte Einlage gut funktioniert. «Mit einer Datenanalyse können wir also tatsächlich verschiedene Aktivitäten identifizieren, je nachdem, welche Sensoren wie stark angesprochen haben», sagt Projektleiter Siqueira.

Im Moment brauchen er und seine Kolleg:innen noch eine Kabelverbindung, um die Daten auszulesen. Seitlich der Einlage haben sie einen Kontakt eingebaut. Einer der nächsten Entwicklungsschritte werde sein, eine drahtlose Verbindung zu schaffen. «Das Auslesen der Daten stand bisher jedoch nicht im Vordergrund unserer Arbeit», betont der Forscher.

Eine solche 3D-​gedruckte Einlagesohle mit integrierten Sensoren könnte künftig von Sportler:innen oder auch in der Physiotherapie genutzt werden, etwa um Trainings-​ oder Therapiefortschritte zu messen. Auf den Messdaten basierend können dann Trainingspläne angepasst und mittels 3D-​Druck permanente Schuheinlagen mit unterschiedlich harten und weichen Zonen fabriziert werden

An der Entwicklung der Einlagen waren Forscher:innen der Empa, der ETH Zürich und der EPFL beteiligt. EPFL-​Forscher Danick Briand koordinierte das Projekt und seine Gruppe steuerte die Sensoren bei, die ETH-​ und Empa-​Forschenden die Entwicklung der Tinten und die Druckplattform. Am Projekt beteiligt waren auch das Universitätsspital Lausanne CHUV und die Orthopädiefirma Numo.

Originalpublikation:

Binelli MR, van Dommelen R, Nagel Y, et al. Digital manufacturing of personalised footwear with embedded sensors. Sci Rep 13, 1962 (2023). doi: 10.1038/s41598-​023-29261-0

Weitere Informationen:

https://ethz.ch/de/news-und-veranstaltungen/eth-news/news/2023/03/3d-gedruckte-e…

Media Contact

Peter Rüegg Hochschulkommunikation
Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Medizintechnik

Kennzeichnend für die Entwicklung medizintechnischer Geräte, Produkte und technischer Verfahren ist ein hoher Forschungsaufwand innerhalb einer Vielzahl von medizinischen Fachrichtungen aus dem Bereich der Humanmedizin.

Der innovations-report bietet Ihnen interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Bildgebende Verfahren, Zell- und Gewebetechnik, Optische Techniken in der Medizin, Implantate, Orthopädische Hilfen, Geräte für Kliniken und Praxen, Dialysegeräte, Röntgen- und Strahlentherapiegeräte, Endoskopie, Ultraschall, Chirurgische Technik, und zahnärztliche Materialien.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Boulder-Detektion für Monopile-Gründungen

… und Seekabel in der Ostsee für den Baltic Power Offshore Windpark. Für die Fundamente der geplanten Windenergieanlagen hat das Fraunhofer-Institut für Windenergiesysteme IWES im Auftrag von Baltic Power eine…

Künstliche Intelligenz für besseren Ostseeschutz

Innovatives Monitoring-Konzept für die Eckernförder Bucht erhält Landesförderung. Künstliche Intelligenz wird künftig dabei helfen, die Überwachung des ökologischen Zustandes der Eckernförder Bucht zu verbessern. Die Verknüpfung und Auswertung großer Datenmengen…

CO2 aus der Luft filtern bleibt teurer als erhofft

CO2 in gros­sem Stil aus der Luft zu fil­tern, wird zwar mit­tel­fris­tig güns­ti­ger, aber nicht so güns­tig wie bis­her an­ge­nom­men. Zu die­sem Schluss kom­men ETH-​Forschende auf­grund ei­ner neu­en Schät­zung. Die…

Partner & Förderer