Molekularer Regulator FUS: Wirkweise aufgedeckt

Das Protein FUS in seiner gewöhnlichen Form (links) und in der ALS-auslösenden mutierten Form (rechts). Der Kern (also die DNA) wird blau angezeigt; das FUS-Protein rot. Bild: The EMBO Journal

Das im Zellkern vorhandene RNA-bindende Protein FUS sorgt dafür, dass die Baupläne bestimmter Proteine korrekt umgesetzt werden. Da diese Baupläne im Erbgut oft nicht in zusammenhängenden Stücken vorliegen, müssen sie zuerst bearbeitet werden, bevor sie im Zytoplasma für die Proteinsynthese verwendet werden können.

Wie genau der Regulator FUS hilft, die fragmentierte Erbinformation (DNA) zu einer korrekten Bauanleitung für ein funktionales Protein zu verarbeiten, war bislang unbekannt. Einzig: Neurodegenerativen Krankheiten liegen oft Fehler im Ablauf der Verarbeitung der ersten groben Abschrift (prä-mRNA) der im Zellkern gespeicherten DNA zugrunde. So ist auch das Gen FUS in ALS-Patienten mutiert.

Das internationale Forschungsteam unter der Leitung von Marc-David Ruepp, Departement für Chemie und Biochemie der Universität Bern, liefert zusammen mit Forschenden der Universität von Milano, Italien, im jüngsten EMBO Journal nun Antworten zu den zentralen Fragen: Welche Rolle spielt FUS im RNA Metabolismus und welche Funktionen des Proteins werden durch die ALS-auslösenden Mutationen beeinträchtigt.

FUS reguliert das Spleissen von Introns

Mittels massenspektrometrischen Analysen identifizierten die Forschenden die mit FUS interagierenden Proteine; mit gentechnischen Methoden – einschliesslich der neuen CRISPR/Cas9 Technologie – studierten sie die Auswirkungen gezielt angebrachter Mutationen und fanden dabei heraus: FUS reguliert das Spliceosom, eine molekulare Maschine die nichtkodierende Abschnitte – die Introns – aus der prä-mRNA herausschneidet und die kodierenden Abschnitte – die Exons – miteinander zur mRNA verknüpft.

Interessanterweise gibt es in menschlichen Zellen einen seltenen Typ von Introns, sogenannte Minor Introns. Diese kommen besonders häufig in Genen vor, die für die Funktion von Nervenzellen benötigt werden, und werden von einem speziellen Spliceosom herausgeschnitten, dem Minor Spliceosom. Das Forscherteam um Erstautor Stefan Reber konnte zeigen, dass FUS spezifisch das Herausschneiden von Minor Introns reguliert indem es mit diesem direkt interagiert.

Wird die Regulationsfähigkeit von FUS durch ALS-auslösende Mutationen reduziert oder ausgeschaltet, beeinträchtigt dies die korrekte Verarbeitung der Baupläne von vielen Genen die für Proteine mit neuronalen Funktionen kodieren. Die Forscher vermuten deshalb, dass die Fehlfunktion des Minor Spliceosoms der Grund dafür sein könnte, dass bei der ALS Krankheit spezifisch die Motoneuronen absterben.

Über den Nationalen Forschungsschwerpunkt (NCCR) RNA & Disease

Der NCCR RNA & Disease ist einer der gegenwärtig 21 Nationalen Forschungsschwerpunkte des Schweizerischen Nationalfonds. NCCR RNA & Disease vereint Schweizer Forschungsgruppen, die sich mit verschiedenen Aspekten der RNA-Biologie und der Rolle von RNA in Krankheitsmechanismen befassen. Heiminstitutionen dieses NCCRs sind die Universität Bern und die ETH Zürich. Die vorliegende Arbeit entstand im Rahmen des NCCR RNA & Disease.

Publikationsangaben:

Stefan Reber, Jolanda Stettler, Giuseppe Filosa, Martino Colombo, Daniel Jutzi, Silvia C. Lenzken, Christoph Schweingruber, Rémy Bruggmann, Angela Bachi, Silvia M.L. Barabino, Oliver Mühlemann, Marc-David Ruepp: Minor intron splicing is regulated by FUS and affected by ALS-associated FUS mutants, The EMBO Journal, 1.6.2016 DOI: 10.15252/embj.201593791

http://www.unibe.ch/aktuell/medien/media_relations/medienmitteilungen/2016/medie…

Media Contact

Nathalie Matter Universität Bern

Alle Nachrichten aus der Kategorie: Medizin Gesundheit

Dieser Fachbereich fasst die Vielzahl der medizinischen Fachrichtungen aus dem Bereich der Humanmedizin zusammen.

Unter anderem finden Sie hier Berichte aus den Teilbereichen: Anästhesiologie, Anatomie, Chirurgie, Humangenetik, Hygiene und Umweltmedizin, Innere Medizin, Neurologie, Pharmakologie, Physiologie, Urologie oder Zahnmedizin.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Robotisch assistiertes Laserverfahren soll OP-Risiken minimieren

Eine Spinalkanalstenose – eine knöcherne Verengung des Wirbelkanals – kann für Betroffene zur Qual werden. Drückt sie auf das Rückenmark, drohen ihnen chronische Schmerzen und Lähmungserscheinungen. Häufig hilft dann nur…

Verbesserte Materialien für die Verbindungen von Mikrochips

Leistungsfähiger, stromsparender, komplexer – Hersteller von modernen Microchips sehen sich stetig neuen Herausforderungen gegenüber, auch in Bezug auf die dort notwendigen elektrischen Verbindungen. Das Fraunhofer IPMS und BASF widmen sich…

Inspiriert von der Natur: Biophysiker aus dem Projekt InCamS@BI entwickelt neuartige Mikroplastikfilter im Labor

Heutzutage ist es überall zu finden: Mikroplastik. Es wird insbesondere durch die Luft und durchs Wasser in die entlegensten Winkel der Erde transportiert. Eine der großen Fragen lautet: Wie können…