Zehntausende mögliche Katalysatoren auf dem Durchmesser eines Haars

In jeder Ansammlung von Punkten befindet sich eine einzelne Mikrobibliothek – jede einzelne davon enthält eine Zusammensetzungsvariation.
© Lars Banko

Bei der Suche nach Katalysatoren für die Energiewende sind Materialien aus mindestens fünf Elementen besonders vielversprechend. Nur gibt es davon theoretisch Millionen – wie findet man da das leistungsstärkste?

Einem Bochumer Forschungsteam unter Leitung von Prof. Dr. Alfred Ludwig, Leiter des Lehrstuhls Materials Discovery and Interfaces, MDI, ist es gelungen, in einem einzigen Schritt alle möglichen Kombinationen aus fünf Elementen auf einem Träger unterzubringen. Zusätzlich entwickelten die Forschenden eine Methode, um das elektrokatalytische Potenzial jeder einzelnen der Kombinationen in dieser Mikromaterialbibliothek im Hochdurchsatz zu analysieren.

So wollen sie die Suche nach potenziellen Katalysatoren um ein Vielfaches beschleunigen. Das Team der Ruhr-Universität Bochum berichtet in der Zeitschrift Advanced Materials vom 21. Dezember 2022.

Ein komplettes fünf-elementiges Materialsystem auf einem einzigen Träger

Bei der Herstellung von Materialbibliotheken sogenannter Hochentropielegierungen setzen die Bochumer Forschenden auf ein Sputterverfahren. Dabei werden alle Ausgangstoffe zeitgleich aus verschiedenen Richtungen auf einen Träger aufgebracht. Auf jeder Stelle des Trägers schlagen sich die Ausgangsstoffe in verschiedenen Mischungsverhältnissen nieder. „Dieses Verfahren haben wir in der aktuellen Arbeit durch den Einsatz von Lochblenden so verfeinert, dass jede Materialmischung nur noch in einem winzigen Punkt von etwa 100 Mikrometer Durchmesser auf dem Träger entsteht“, beschreibt Alfred Ludwig. Dies entspricht ungefähr dem Durchmesser eines menschlichen Haars. „Durch die Miniaturisierung der Materialbibliotheken sind wir jetzt in der Lage, ein komplettes Fünf-Komponentensystem auf einem einzigen Träger unterzubringen – ein enormer Fortschritt“, ergänzt Dr. Lars Banko vom Lehrstuhl MDI, der seit kurzem das EXIST-geförderte Startup Projekt xemX leitet.

Untersuchung mit hängenden Tropfen

Für die Untersuchung der so entstandenen Materialien nutzen die Forschenden die sogenannte Scanning Electrochemical Cell Microscopy, kurz SECCM. Dabei werden über einen hängenden Nanotropfen eines Elektrolyts mit einem Tausendstel des Durchmessers eines Haares die elektrochemischen Eigenschaften des Materials in einem bestimmten Punkt gemessen. „Das erlaubt es uns, im Hochdurchsatz die Kandidaten mit der höchsten katalytischen Aktivität ausfindig zu machen, bei denen eine genauere Untersuchung lohnenswert erscheint“, sagt Prof. Dr. Wolfgang Schuhmann, Leiter des Lehrstuhls für Analytische Chemie an der Ruhr-Universität.

Mittels dieser Methoden wollen die Forschenden die Überfülle möglicher Materialien für neue Katalysatoren effizient durchsuchen, um katalytisch besonders aktive Kandidaten ausfindig zu machen. Katalysatoren werden zum Beispiel für Energiewandlungsprozesse benötigt, die es unter anderem ermöglichen könnten, Grünen Wasserstoff im großen Maßstab als umweltfreundlichen Energieträger zu nutzen.

Förderung

Die Arbeiten wurden gefördert durch die Deutsche Forschungsgemeinschaft im Rahmen der Sonderforschungsbereiche/Transregios 87 (Projektnr. 138690629) und 247 (Projektnr. 388390466) sowie durch den Europäischen Forschungsrat (CasCat [833408] und Marie Skłodowska-Curie MSCA-ITN Single-Entity Nanoelectrochemistry Sentinel [812398]).

Wissenschaftliche Ansprechpartner:

Prof. Dr. Alfred Ludwig
Materials Discovery and Interfaces
Institut für Werkstoffe
Fakultät für Maschinenbau
Ruhr-Universität Bochum
Tel.: +49 234 32 27492
E Mail: alfred.ludwig@rub.de

Originalpublikation:

Lars Banko, Emmanuel Batsa Tetteh, Aleksander Kostka, Tobias Horst Piotrowiak, Olga Anna Krysiak, Ulrich Hagemann, Corina Andronescu, Wolfgang Schuhmann, Alfred Ludwig: Microscale combinatorial libraries for the discovery of high-entropy materials, in: Advanced Materials, 2023, DOI: 10.1002/adma.202207635, https://onlinelibrary.wiley.com/doi/10.1002/adma.202207635

http://www.ruhr-uni-bochum.de/

Media Contact

Meike Drießen Dezernat Hochschulkommunikation
Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Eiskernprojekt beendet zweite Antarktis-Saison erfolgreich

Bohrprojekt Beyond EPICA erreicht eine Tiefe von 808 Metern im antarktischen Eisschild. Die zweite Antarktis-Saison des Eiskern-Bohrprojekts Beyond EPICA – Oldest Ice wurde erfolgreich abgeschlossen. Das internationale Forschungsprojekt wird von…

Mobilfunksystem für die zuverlässige Fernsteuerung von Drohnen

Unterbrechungsfreie Datenübertragung für unbemannte Flugkörper. Drohnen sind immer häufiger auch außerhalb der Sichtweite der steuernden Person unterwegs. Jedoch eignen sich konventionelle Fernsteuerungen aufgrund ihrer Reichweitenbegrenzung nicht für solche Flüge. Einfache…

Energetischer Quartiersumbau für bezahlbares Wohnen

Im Großprojekt »smood® – smart neighborhood« arbeiteten in den vergangenen Jahren unter wissenschaftlicher Beteiligung von Fraunhofer 16 Unternehmen, vier Forschungseinrichtungen und ein Verein an der Zukunft der energetischen Sanierung: Vom…

Partner & Förderer