Neues Verständnis der Defektbildung an Silizium-Elektroden

Inhomogenitäten in der äußeren SEI-Schicht (rot) führen beim Laden zu unterschiedlichen Lithium-Anteilen in der Silizium-Anode (gelb/grau), sodass es zu Rissen und anderen Defekten kommt. C. Chen et al., Nature Communications, https://doi.org/10.1038/s41467-020-17104-9 (CC BY 4.0)

Silizium-basierte Anoden können in Lithium-Ionen-Akkus prinzipiell neunmal so viel Ladung speichern wie der üblicherweise verwendete Graphit, bei gleichem Gewicht und gleicher Größe. Mit solchen Batterien ausgerüstet, würden Elektroautos ohne Ladestopp deutlich weiter fahren als bisher und Smartphones wären länger betriebsbereit, ohne an die Steckdose zu müssen.

Das Problem: Schon nach kurzem Batterie-Gebrauch bilden sich in der Silizium-Anode Risse oder Teile des Materials wandeln sich gar in ein Pulver um. Ein Team um die Jülicher Forscher Dr. Chunguang Chen und Prof. Peter Notten hat nun Vorschläge unterbreitet, wie sich die Stabilität der Silizium-Anoden möglicherweise verbessern lässt – ein Ergebnis vielfältiger Untersuchungen mit einer Kombination aus vier innovativen Methoden.

Die Untersuchungen zeichnen ein detailreiches Bild vom Ablauf beim Ladevorgang, den die Forscher auch in einem Video verdeutlichen: Lithiumionen aus dem flüssigen Elektrolyten wandern zur atomar glatten Oberfläche des Silizium-Kristalls. Dort entstehen nacheinander zwei Schichten einer sogenannten Festkörper-Elektrolyt-Grenzfläche (Solid Electrolyte Interphase, kurz: SEI).

Die erste „innere“ SEI-Schicht, besteht hauptsächlich aus Lithiumfluorid und anderen anorganischen Lithiumverbindungen. Die „äußere“ zweite SEI-Schicht ist weicher und enthält hauptsächlich organische, also kohlenstoffhaltige Lithiumverbindungen. Zeitgleich zur Bildung der äußeren SEI-Schicht wandern Lithium-Ionen in den Silizium-Kristall unterhalb der SEI ein: Dort entsteht eine amorphe, also nicht-kristalline Lithium-Silizium-Legierung.

„Bemerkenswert ist, dass sich die SEI nicht überall einheitlich – homogen – ausbildet, sondern dass es vor allem in der äußeren SEI-Schicht dickere und dünnere Bereiche sowie Bereiche mit stark unterschiedlicher Lithiumionen-Beweglichkeit gibt“, erläutert Dr. Chunguang Chen.

Das hat gravierende Folgen: Auch die Lithium-Silizium-Legierung unter der SEI bildet sich trotz des ursprünglich perfekten Silizium-Kristalls nicht homogen aus. Es entstehen direkt beim ersten Ladevorgang Bereiche mit unterschiedlich hohem Lithium-Anteil sowie Risse und andere Defekte an der Grenze zwischen amorpher Legierung und Kristall.

„Bei weiteren Lade-Entlade-Vorgängen erweisen sich diese Defekte als Ausgangspunkte für eine Verformung der gesamten Anode“, sagt Prof. Peter Notten. Denn beim damit verbundenen zyklischen Ein- und Ausbau der Lithiumionen dehnt sich die amorphe Legierungsschicht um bis zu 300 Prozent aus und schrumpft dann wieder. Diese Volumenänderung setzt den Siliziumkristall darunter unter Spannung. Dieser Spannung gibt der Kristall dann bevorzugt an den Defekten nach.

„Will man die strukturelle Stabilität der Anode beim zyklischen Laden und Entladen der Batterie erhöhen, muss man bereits die Entstehung der Defekte unterdrücken, die beim ersten Ladevorgang entstehen“, folgert Dr. Chen. Erfolgversprechender Ansatzpunkt sei es, für eine möglichst homogene Ausbildung der inneren SEI zu sorgen.

Um die Defektbildung an der Grenze zwischen Siliziumkristall und Lithium-Silizium-Legierung zu beobachten, setzen die Forscher die Vollfeld-Röntgenbeugungs-Mikroskopie (Full Field Diffraction X-ray Microscopy) ein. Die Untersuchungen mit dieser neuen Methode führten sie an der Europäischen Synchrotron-Strahlungsquelle ESRF in Grenoble, Frankreich, durch. Die innere und äußere SEI untersuchten sie dagegen im Forschungszentrum Jülich mit der in-operando-Rasterkraftmikroskopie (AFM), der Röntgenphotoelektronenspektroskopie (XPS) und der elektrochemischen Dehnungsmikroskopie (ESM).

Dr. Chunguang Chen
Institut für Energie- und Klimaforschung (IEK-9)
Forschungszentrum Jülich
Tel.: 02461 61-2011
E-Mail: c.chen@fz-juelich.de

Chunguang Chen, Tao Zhou, Dmitri L. Danilov, Lu Gao, Svenja Benning, Nino Schön, Samuel Tardif, Hugh Simons, Florian Hausen, Tobias U. Schülli, R.-A. Eichel, Peter H. L. Notten
Impact of dual-layer solid-electrolyte interphase inhomogeneities on early-stage defect formation in Si electrodes
Nature Communications (published 1 July 2020), DOI: https://doi.org/10.1038/s41467-020-17104-9 (Open Access)

https://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2020/fachmeldungen… – Pressemitteilung des Forschungszentrums Jülich
https://www.fz-juelich.de/iek/iek-9/DE/Home/home_node.html – Institut für Energie- und Klimaforschung, Grundlagen der Elektrochemie (IEK-9)

Media Contact

Dipl.-Biologin Annette Stettien Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Mit UV-C-Strahlung wirksam gegen das Coronavirus vorgehen

PTB untersuchte den Raumluftreiniger von Braunschweiger Entwicklern: Für den untersuchten Prototyp lässt sich abschätzen, dass durch das Gerät geführte Viren zerstört und somit die Virenlast in der Raumluft prinzipiell deutlich…

Azoren-Plateau entstand durch Vulkanismus und tektonische Dehnung

Der submarine Terceira-Graben geht auf tektonische und vulkanische Aktivitäten zurück und ähnelt damit kontinentalen Grabensystemen. Dies zeigen Lavaproben vom Meeresboden, die 2016 bei der Expedition M128 mit dem Forschungsschiff Meteor…

Schmerzmittel für Pflanzen

Forschende am IST Austria behandeln Pflanzen mit Schmerzmitteln und gewinnen so neue Erkenntnisse über das Pflanzenwachstum. Neue Studie in Cell Reports veröffentlicht. Jahrhundertelang haben Menschen Weidenrinde zur Behandlung von Kopfschmerzen…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close