Kobalt statt Iod macht Solarzellen umweltfreundlicher

Damit gelingt ihnen ein weiterer Schritt in Richtung einer umweltfreundlichen Energiegewinnung. Die Fachzeitschrift «Chemical Communications» hat die Resultate zu den sogenannten Cu-Co-Zellen veröffentlicht.

Farbstoffsolarzellen oder DSC (Dye-sensitized Solar Cells) verwandelt Licht in Elektrizität. Sie bestehen aus einem Halbleiter, auf dem ein Farbstoff verankert ist. Dieser fängt Sonnenlicht ein, und durch einen Elektronentransferprozess entsteht eine elektrische Spannung. Für den Ladungstransport innerhalb der Farbstoffsolarzelle sorgen Elektrolyte.

Als Elektrolyt wird üblicherweise Iod und Iodid verwendet. Chemikern der Universität Basel ist es nun gelungen, dieses iodbasierte Transportsystem in Kupfer-Farbstoffsolarzellen durch einen Kobalt-Komplex zu ersetzen. In Tests zeigte sich dadurch kein Verlust in der Leistung.

Häufig vorkommendes Element

Durch das Ersetzen von Iod durch Kobalt erhöht sich die Nachhaltigkeit der Solarzellen deutlich: «Iod kommt als Element im Boden nur selten vor, hingegen gibt es Kobalt 50-mal häufiger», erklärt Projektleiterin Dr. Biljana Bozic-Weber. Ausserdem verbessert sich dadurch die langfristige Stabilität von DSC mit Kupferfarbstoffen, da dadurch auch ein Abbauprozess verhindert wird, bei dem die Kupferverbindungen mit dem Elektrolyt reagieren und Kupferiodid bilden.

Der Forschungsgruppe um die Basler Chemieprofessoren Ed Constable und Catherine Housecroft arbeitet zurzeit daran, die Leistung von Farbstoffsolarzellen mit Kupferfarbstoffen zu verbessern. Ihnen war es 2012 gelungen, das seltene Ruthenium in Solarzellen durch Kupferderivate zu ersetzen.

Die erstmalige Kombination von Kupferfarbstoffen und Kobaltelektrolyten bildet einen wichtigen Schritt in der Entwicklung von stabilen, iodfreien Solarzelle auf Kupferbasis, auch wenn noch zahlreiche Effizienzaspekte behandelt werden müssen, bevor eine Kommerzialisierung ausserhalb von Nischenmärkten beginnen kann.

Molecular Systems Engineering

«Das Austauschen einer einzelnen Komponente der Solarzellen hat zur Konsequenz, dass alle anderen optimiert werden müssen», so Ed Constable. Dieses Vorgehen ist Teil eines neuen Ansatzes namens «Molecular Systems Engineering», bei dem alle molekularen und materiellen Komponenten eines Systems integriert und optimiert werden, um Nanomaschinen zu verbessern. Die vorliegende Publikation beschreibt das Engineering des Elektrolyten, des Farbstoffes und des Halbleiters.

Dieser systemische Ansatz in der Chemie eignet sich speziell für das Engineering von anorganisch-biologischen Hybriden. Er bildet auch die Basis für die bestehende Zusammenarbeit der Universität Basel mit dem ETH-Department of Biosystems Engineering in Basel (D-BSSE) und der EMPA. Ein gemeinsamer Antrag der Universität Basel und des D-BSSE für einen neuen nationalen Forschungsschwerpunkt auf diesem Gebiet steht momentan in der Endphase der Beurteilung.

Originalbeitrag
Biljana Bozic-Weber, Edwin C. Constable, Sebastian O. Fürer, Catherine E. Housecroft, Lukas J. Troxler and Jennifer A. Zampese
Copper(I) dye-sensitized solar cells with [Co(bpy)3]2 /3 electrolyte
Chem. Commun., 2013,49, 7222-7224 | doi: 10.1039/C3CC44595J
http://dx.doi.org/10.1039/C3CC44595J – Abstract

Media Contact

Reto Caluori Universität Basel

Weitere Informationen:

http://www.unibas.ch

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Junger Gasriesenexoplanet gibt Astronomen Rätsel auf

Wissenschaftler finden den bisher jüngsten Super-Jupiter, für den sie sowohl Masse als auch Größe messen konnten. Eine Forschergruppe um Olga Zakhozhay vom MPIA hat einen Riesenplaneten um den sonnenähnlichen Stern…

Im dynamischen Netz der Sonnenkorona

In der mittleren Korona der Sonne entdeckt ein Forscherteam netzartige, dynamische Plasmastrukturen – und einen wichtigen Hinweis auf den Antrieb des Sonnenwindes. Mit Hilfe von Messdaten der amerikanischen Wettersatelliten GOES…

Metall dringt tiefer in Auenböden ein als Plastik

Kunststoffe und Metalle verteilen sich unterschiedlich in den Böden von Flussauen: Während Plastikpartikel sich in den obersten Bodenschichten konzentrieren, finden sich Metalle bis in eine Tiefe von zwei Metern. Das…

Partner & Förderer