Entlastung für Ozeane und Mülldeponien?

Fest und elastisch, aber abbaubar: Protein-basierte Biokunststoffe
(c) Wiley-VCH

Fest und elastisch, aber abbaubar: Protein-basierte Biokunststoffe.

Mehr als acht Millionenen Tonnen Kunststoff gelangen jedes Jahr in die Ozeane – eine ernste Gefahr für Umwelt und Gesundheit. Bioabbaubarer Biokunststoffe könnten ein Ausweg sein. In der Zeitschrift Angewandte Chemie stellt ein Forschungsteam jetzt einen neuen Ansatz zur Herstellung einfach verarbeitbarer, bioabbaubarer, biokompatibler Kunststoffe mit günstigen mechanischen Eigenschaften auf Protein-Basis vor.

Ob Verpackung oder Spielzeug, ob Mulchfolie oder Auto: Kunststoffe auf Basis von Erdöl sind allgegenwärtig. Die Nachfrag steigt ebenso wie die Müllberge. Biokunststoffe auf Basis natürlicher Rohstoffe, wie Stärke, sowie synthetischer Biomaterialien, wie Polymilchsäure, zeigten bisher meist mangelhafte Festigkeit, Biokompatibilität und/oder Bioabbaubarkeit. Oft benötigen sie zudem komplexe energieverschlingende Verarbeitungsprozesse sowie giftige Chemikalien.

Dem Team um Jingjing Li und Yawei Liu (Chinesische Akademie der Wissenschaften in Changchun) sowie Bo Wei (The First Medical Center of PLA General Hospital) stellen jetzt neuartige Biokunststoffe mit gezielt einstellbaren Eigenschaften vor. Dazu entwarfen sie zwei Lysin-reiche Proteine und stellten sie in Bakterienkulturen her: „ELP“ ist ein dem Bindegewebsprotein Elastin ähnliches Polypeptid ohne definierte Faltung, das Festigkeit und Elastizität mitbringt. „SRT“ besteht aus ELP- plus kristallinen Segmenten eines Tintenfisch-Proteins mit β-Faltblatt-Struktur.

ELP (oder SRT) wird über seine Lysin-Amino-Seitengruppen mit einem Polyethylenglykol (PEG)-Derivat quervernetzt. (PEG wird u.a. pharmazeutisch verwendet.) Erfolgt dies in Wasser, kann das Material anschließend einfach in einer „Gussform“ getrocknet werden. Ergebnis ist ein fester, transparenter, lösungsmittelbeständiger Biokunststoff, dessen mechanische Eigenschaften über den Anteil an PEG variiert werden können. So lassen sich Biokunststoffe mit hoher mechanischer Festigkeit bei Raumtemperatur in beliebiger Form herstellen – ohne giftige Chemikalien und aufwendige Verarbeitungsschritte wie Verflüssigung, Extrusion oder Blasformen. In ihrer Bruchspannung übertreffen sie viele kommerzielle Kunststoffe. Problem ist derzeit noch ihr Aufquellen in Wasser.

Wird ELP in Wasser/Glycerin-Lösung vernetzt, geliert das Material zu weichen, elastischen Biokunststoffen. Außerdem stellte das Team durch Nass-Spinnen Biofasern her, die so fest wie manche biotechnologischen Spinnenseiden sind. Das natürliche Enzym Elastase baut die Biokunststoffe vollständig ab.

Spielzeuge aus dem neuen nicht toxischen, mit Lebensmittelfarbe färbbaren Biokunststoff wären denkbar. Auch als Wundkleber kommt das blutstillend wirkende Material in Betracht. Implantate wären zudem nach wenigen Wochen komplett abgebaut.

Für eine Informationsspeicherung könnte ELP zusammen mit Peptiden polymerisiert werden, denen über ihre spezifischen Aminosäuresequenzen Codes einprogrammiert wurden. Per Sequenzierung ließen sich die Informationen später wieder auslesen. Dabei wären höhere Informationsdichten als mit DNA-Datenspeichern möglich.

Angewandte Chemie: Presseinfo 02/2022

Autor/-in: Yawei Liu, Chang Chun Institute of Applied Chemistry, Chinese Academy of Sciences (China), mailto:yaweiliu@ciac.ac.cn

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.
Die „Angewandte Chemie“ ist eine Publikation der GDCh.

Originalpublikation:

https://doi.org/10.1002/ange.202117538

Weitere Informationen:

http://presse.angewandte.de

Media Contact

Maren Mielck Abteilung Öffentlichkeitsarbeit
Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Forschende enthüllen neue Funktion von Onkoproteinen

Forschende der Uni Würzburg haben herausgefunden: Das Onkoprotein MYCN lässt Krebszellen nicht nur stärker wachsen, sondern macht sie auch resistenter gegen Medikamente. Für die Entwicklung neuer Therapien ist das ein…

Mit Kleinsatelliten den Asteroiden Apophis erforschen

In fünf Jahren fliegt ein größerer Asteroid sehr nah an der Erde vorbei – eine einmalige Chance, ihn zu erforschen. An der Uni Würzburg werden Konzepte für eine nationale Kleinsatellitenmission…

Zellskelett-Gene regulieren Vernetzung im Säugerhirn

Marburger Forschungsteam beleuchtet, wie Nervenzellen Netzwerke bilden. Ein Molekülpaar zu trennen, hat Auswirkungen auf das Networking im Hirn: So lässt sich zusammenfassen, was eine Marburger Forschungsgruppe jetzt über die Vernetzung…

Partner & Förderer