Die letzten Geheimnisse des Glimmers

Florian Mittendorfer, Erstautorin Giada Franceschi, Michael Schmid und Andrea Conti (v.l.n.r.)
Foto: TU Wien

Ein altbekanntes Mineral rückt durch Anwendungen in der Elektronik wieder ins Zentrum der Aufmerksamkeit: Die TU Wien zeigt, dass Glimmer Überraschungen bereithält.

Glimmer ist auf den ersten Blick etwas ganz Gewöhnliches: Es ist ein häufiges Mineral, das etwa in Granit vorkommt, es wurde bereits unzählige Male untersucht, aus geologischer, chemischer und technischer Perspektive.

Man könnte glauben, über so ein alltägliches Material lässt sich nichts Neuer mehr herausfinden. Doch das wäre ein Irrtum: Die Oberflächenphysikalischen Details von Glimmer wurden nämlich bisher noch nie auf atomarer Skala studiert – nun präsentierte allerdings ein Team der TU Wien dazu eine Studie im Fachjournal „Nature Communications“. Es gelang, die Verteilung von Kalium-Ionen auf der Glimmer-Oberfläche zu erklären. Das ist wichtig für die Forschung an Elektronik mit 2D-Materialien.

Atomar dünne Schichten

2D-Materialien sind eines der meisterforschten Themen in der aktuellen Materialwissenschaft: Seit es gelungen ist, bestimmte Materialien wie Graphen oder Molybdändisulfid herzustellen, die nur aus einer oder aus wenigen Lagen von Atomen bestehen, werden immer wieder neue Erkenntnisse über die ungewöhnlichen Eigenschaften dieser Materialien gewonnen.

Glimmer ist in gewissem Sinn ein natürlich vorkommendes 2D-Material: Er besteht aus atomar dünnen Schichten, die je nach Glimmer-Typ unterschiedliche Atome enthalten können: Sauerstoff ist immer dabei, oft Silizium, häufig auch Kalium oder Aluminium. Der Schicht-Aufbau des Glimmers ist auch der Grund für sein charakteristisches Glänzen – oft erkennt man ein Farbenspiel, ähnlich wie bei einer dünnen Ölschicht auf einer Wasserpfütze.

Kalium-Ionen im Ultrahochvakuum

Die äußerste Schicht von Glimmer ist allerdings schwer zu untersuchen, denn dort lagern sich in natürlicher Umgebung sofort andere Atome und Moleküle aus der Luft an. Mit einem neuartigen Rasterkraftmikroskop an der TU Wien gelang es nun aber, die Oberfläche von Glimmer im Ultrahochvakuum abzubilden. „Dabei konnten wir uns ansehen, wie die Kalium-Ionen auf der Oberfläche verteilt sind“, sagt Giada Franceschi, die Erstautorin des aktuellen Papers, die im Team von Prof. Ulrike Diebold forscht. „Auch Einblicke in die Positionen der Aluminum-Ionen, die darunter liegen, konnten wir gewinnen – das ist eine experimentell besonders schwierige Aufgabe.“

Die Aufnahmen der TU Wien zeigen: Die Kalium-Ionen sind nicht zufällig auf der Oberfläche verteilt, wie man das bisher vermutet hatte, sondern ordnen sich in winzigen Mustern an. Diese Verteilungen konnten mit Hilfe von Computersimulationen auch berechnet werden.

Passender Isolator für 2D-Elektronik

Wichtig könnte das unter anderem für Versuche sein, 2D-Materialien wie Graphen für elektronische Schaltungen zu verwenden. Dafür benötigt man nämlich auch passende Isolatoren – und Glimmer ist ein sehr naheliegender Kandidat dafür. „In solchen elektronischen Bauteilen spielen die Oberflächeneigenschaften von Glimmer eine ganz entscheidende Rolle“, sagt Giada Franceschi.

Wissenschaftliche Ansprechpartner:

Dr. Giada Franceschi
Institut für Angewandte Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
+43 1 58801 13466
giada.franceschi@tuwien.ac.at

Prof. Ulrike Diebold
Institut für Angewandte Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
+43 1 58801 13425
ulrike.diebold@tuwien.ac.at

Originalpublikation:

G. Franceschi et al., Resolving the intrinsic short-range ordering of K+ ions on cleaved muscovite mica, Nature Communications 14, 208 (2023, öffnet eine externe URL in einem neuen Fenster).

https://www.tuwien.at

Media Contact

Dr. Florian Aigner PR und Marketing
Technische Universität Wien

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Mit Lasern in eine mobile Zukunft

Das EU-Infrastrukturprojekt NextGenBat hat ambitionierte Ziele: Die Performance von mobilen Energiespeichern wie Batterien soll mit neuen Materialien und laserbasierten Herstellungsverfahren enorm gesteigert werden. Zum Einsatz kommt dabei ein Ansatz zur…

Aufbruch in die dritte Dimension

Lassen sich auch anspruchsvolle Metallbauteile in Serie produktiv und reproduzierbar 3D-drucken? Forschende aus Aachen bejahen diese Frage: Sie transferierten am Fraunhofer-Institut für Lasertechnik ILT das zweidimensionale Extreme Hochgeschwindigkeits-Laserauftragschweißen EHLA auf…

Motorenforscher starten Messkampagne mit klimaneutralem Wasserstoff

„Wasserstoff und daraus erzeugte synthetische Kraftstoffe werden ein zentraler Baustein der maritimen Energiewende sein“, davon ist Professor Bert Buchholz von der Fakultät für Maschinenbau und Schiffstechnik der Universität Rostock fest…

Partner & Förderer