Kohlenstofffreies Material so hart wie Diamant

Kann kohlenstofffreies Material so hart wie Diamant sein? Diese Frage konnte im Verlauf experimenteller Arbeiten von einer deutsch-französischen Forschergruppe unter der Leitung von Dr. Natalia Dubrovinskaia positiv beantwortet werden.

Die Gruppe, zu der Mitarbeiter des Bayerischen Geoinstituts der Universität Bayreuth gehören, zeigte, dass die mechanischen Eigenschaften polykristalliner Materialien wesentlich verbessert werden können, wenn die Korngröße des Werkstoffs auf den Nanobereich verkleinert wird.

Bayreuth (UBT). Kann kohlenstofffreies Material so hart wie Diamant sein? Diese Frage konnte im Verlauf experimenteller Arbeiten von einer deutsch-französischen Forschergruppe unter der Leitung von Dr. Natalia Dubrovinskaia positiv beantwortet werden. Die Gruppe, zu der Mitarbeiter des Bayerischen Geoinstituts der Universität Bayreuth gehören, zeigte, dass die mechanischen Eigenschaften polykristalliner Materialien wesentlich verbessert werden können, wenn die Korngröße des Werkstoffs auf den Nanobereich verkleinert wird.

Harte Werkstoffe erregen die Aufmerksamkeit von Wissenschaftlern, die Strukturen und Bindungseigenschaften dieser Materialien besser verstehen wollen. Die Ursache der hohen Härte, einer mechanischen Stoffeigenschaft, ist immer noch nicht unzweifelhaft geklärt. Andererseits sind derzeit im Handel verfügbare harte Werkstoffe für bestimmte moderne Herausforderungen nicht geeignet, sei es für ultra-tiefe Bohrungen in der Öl- und Bergbauindustrie oder im Bereich der Hochgeschwindigkeits- und Präzisionsbearbeitung harter Legierungen oder von Keramik. Die Entwicklung eines idealen Werkstoffes für die Schneid- und Bohrindustrie, der gleichermaßen hart und zäh ist, stellt immer noch ein notwendiges und aktuelles Forschungsziel der Materialwissenschaften dar.

Als superharte Werkstoffe gelten Materialien mit einer Härte, die zwischen der von kubischem Bornitrid (cBN, Härte Hv ~ 50 GPa) und der von Diamant (Hv ~ 100 GPa), den härtesten bekannten Werkstoffen, liegt. Unter dem Aspekt thermischer Stabilität und Reaktionsresistenz ist cBN dem Diamant überlegen; auch gilt cBN als das „Super“-Schleifmittel zur Bearbeitung harter Eisenstähle. Dennoch kann cBN aufgrund seiner um 50 % geringeren Härte Diamant nicht vollständig ersetzen. In Wissenschaft und Industrie konzentrieren sich zahlreiche Untersuchungen auf die Synthese superharter Phasen im ternären System Bor-Kohlenstoff-Stickstoff (B-C-N) als dünne Oberflächenfilme oder als formloses Material, um diese „Härtelücke“ zu schließen.

In einem gerade im renommierten Fachmagazin Applied Physics Letters veröffentlichten Artikel konnten Wissenschaftler aus Deutschland und Frankreich gemeinsam zeigen, dass die über 50 GPa bestehende Härtelücke zwischen kubischem Bornitrid und Diamant durch B-N-Verbundwerkstoffe geschlossen werden kann. Deren Eigenschaften lassen sich über die Korngrößen und Strukturveränderungen der beteiligten Komponenten steuern und optimieren. Die Forscher berichten über die Synthese einzigartiger superharter Nano-Verbundwerkstoffe aus B-N unter Hochdruck- und Hochtemperaturbedingungen.

Die Verbundmaterialien (ABNNCs- aggregated boron nitride nanocomposites) bestehen aus kummulierten Nanopartikeln zweier dichter Bornitrid-Phasen, die eine maximale Härte von 85 GPa aufweisen. Als Ursache dieses einzigartigen Phänomens sehen die Wissenschaftler eine Kombination aus Nano-Massstab und eingeschränkten Quanteneffekten, was zu einer höheren Härte des neuen Stoffes führt, als nach dem „Hall-Petch-Effekt“ zu erwarten gewesen wäre.

Für das neue Synthesekonzept und wegen des Bedarfs an weiteren Kenntnissen über die Synergie der beiden Erhöhungseffekte sowie über die Beziehungen zwischen Mikro- (bzw. Nano-) Struktur und Härte muss man zur Entwicklung superharter Werkstoffe in der Forschung wohl neue Wege begehen. ABNNC stellt die erste kohlenstofffreie Substanz dar, die in der Härte mit einkristallinem und poly-kristallinem Diamant sowie mit aggregierten Diamant-Nanostäbchen vergleichbar wird.

Quellenangabe
Natalia Dubrovinskaia, Vladimir L. Solozhenko, Nobuyoshi Miyajima, Vladimir Dmitriev, Olexandr O. Kurakevych, Leonid Dubrovinsky. Superhard nanocomposite of dense polymorphs of boron nitride: noncarbon material has reached diamond hardness. Applied Physics Letters 90, 1 (2007).

Media Contact

Jürgen Abel idw

Weitere Informationen:

http://www.uni-bayreuth.de/

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Gene zur Anpassung der „inneren Uhr“ sind eng mit dem Alterungsprozess verknüpft

Das Alter bestimmt die Gene, die unsere innere Körperuhr regulieren. Fasziniert von dieser biologischen Funktion veröffentlichte das Universitätsklinikum Halle eine Studie über den zirkadianen Rhythmus in Verbindung mit unserem Alterungsprozess…

Ein Thermomix für die Metallproduktion

CO2-frei und energieeffizient in einem einzigen Schritt. Max-Planck-Wissenschaftler kombinieren die Gewinnung, Herstellung, Mischung und Verarbeitung von Metallen und Legierungen in einem einzigen, umweltfreundlichen Schritt. Ihre Ergebnisse sind jetzt in der…

Mit winzigen Blüten Medikamente transportieren

Mit Mikropartikel aus hauchdünnen Blättern können Medikamente über die Blutbahn punktgenau zu einem Tumor oder einem Blutgerinnsel transportiert werden. Ultraschall und andere akustische Verfahren steuern die Partikel durch den Körper…