Bayreuther Forscher entdecken Kohlenstoffmaterial mit einzigartiger Struktur

Kristalliner Diamant (li.) und parakristalliner Diamant (re.). Rechts sind Einheiten aus würfelförmig angeordneten Kohlenstoffatomen türkis, aus hexagonal angeordneten Kohlenstoffatomen gelb markiert. Unregelmäßige Strukturen sind rot gekennzeichnet.
(c) Hu Tang

Forscher der Universität Bayreuth haben gemeinsam mit Partnern in China und den USA erstmals ein Kohlenstoffmaterial hergestellt, das nicht die streng geordneten Strukturen eines Kristalls aufweist, aber auch nicht amorph ist. Es handelt sich um parakristallinen Diamant mit einzigartigen optischen, mechanischen und thermophysikalischen Eigenschaften. Das Material bietet wichtige Anhaltspunkte für das Verständnis nichtkristalliner Materialien sowie für die gezielte Synthese weiterer neuer Kohlenstoffmaterialien. In “Nature” stellt das internationale Team seine Entdeckung vor.

Diamant ist ein außerordentlich hartes Material, das auf natürlichem Weg unter extrem hohen Drücken im Erdinneren entsteht. Es setzt sich aus Kohlenstoffatomen zusammen, die eine dreidimensionale kristalline Gitterstruktur bilden. Innerhalb dieser Struktur hat jedes Kohlenstoffatom vier kovalente Bindungen. Dabei verteilen sich die vier Elektronen, die an diesen Bindungen beteiligt sind, in einer charakteristischen Weise auf die Orbitale des Atoms. Daher wird der Zustand, in dem sich die Kohlenstoffatome eines Diamants befinden, auch als “sp3-Hybridisierung” bezeichnet. Diamant kommt in vielen Kristallformen vor, die bekanntesten sind der kubische Diamant (CD) und der hexagonale Diamant (HD). Die Synthese von nicht-kristallinem Diamant war jedoch bisher technisch schwierig, was das wissenschaftliche Verständnis seiner Struktur, seiner Eigenschaften und seines Synthesemechanismus einschränkte.

Eine Forschergruppe unter der Leitung von Prof. Dr. Tomo Katsura am Bayerischen Geoinstitut (BGI) der Universität Bayreuth hat nun aber kürzlich eine neue Ultrahochdrucktechnik mit Hilfe einer großvolumigen Multi-Anvil-Presse (MAP) entwickelt. Diese Technik setzten die Forscher ein, um nichtkristallinen Diamant in Millimetergröße zu synthetisieren. Bei einem Druck von 30 Gigapascal und einer Temperatur von mehr als 1.300 Grad Celsius hatten sie Erfolg: Im Zustand der sp3-Hybridisierung bildeten die Kohlenstoffatome eine großflächige nicht-kristalline Struktur, in der sich regelmäßig aufgebaute Einheiten identifizieren lassen.

“Das neue Material kann als ein parakristalliner Diamant beschrieben werden, der sich von allen bisher bekannten strukturellen Abwandlungen von Diamant unterscheidet. Es besitzt eine nicht-amorphe Struktur, in der die Kohlenstoffatome teils in Würfeln, teils in Sechsecken, teils in unregelmäßigen Strukturen angeordnet sind. Die ungewöhnlichen physikalischen Eigenschaften des neuen Materials sind nicht richtungsabhängig und voraussichtlich geeignet, die Erforschung von Hochdruckmaterialien weiter voranzubringen”, sagt Erstautor Dr. Hu Tang vom Bayerischen Geoinstitut. “Das von uns synthetisierte Material ist ein Zwitter: Es bildet erstmals eine Brücke zwischen kristallinen und amorphen, also völlig ungeordneten Strukturen. Es wird die Materialforschung dazu anregen, gezielt nach weiteren neuen Materialien in diesem Zwischenbereich zu suchen”, sagt Prof. Dr. Tomo Katsura, Professor für geowissenschaftliche Hochdruckforschung am BGI.

Der parakristalline Diamant wurde an einer Hochdruckpresse im BGI synthetisiert. Bei der Analyse seiner Strukturen und Eigenschaften waren sowohl Experimente unter hohen Drücken und Temperaturen als auch aufwändige Computersimulationen beteiligt. Die Bayreuther Wissenschaftler haben dabei mit Forschungspartnern in China und den USA eng kooperiert, insbesondere mit Dr. Huiyang Gou am Center for High Pressure Science and Technology Advanced Research in Peking, Prof. Dr. Ming-Sheng Wang an der Xiamen-Universität, China, und Prof. Howard Sheng an der George Mason University in Fairfax.

Wissenschaftliche Ansprechpartner:

Dr. Hu Tang
Bayerisches Geoinstitut (BGI)
Universität Bayreuth
Telefon: +49 (0)921 55-3735
E-Mail: hu.tang@uni-bayreuth.de

Prof. Dr. Tomo Katsura
Bayerisches Geoinstitut (BGI)
Universität Bayreuth
Telefon: +49 (0)921 55-3791
E-Mail: tomo.katsura@uni-bayreuth.de

Originalpublikation:

Hu Tang, Xiaohong Yuan, Yong Cheng, Hongzhan Fei, Fuyang Liu, Tao Liang, Zhidan Zeng, Takayuki Ishii, Ming-Sheng Wang, Tomoo Katsura, Howard Sheng, and Huiyang Gou: Synthesis of paracrystalline diamond. Nature volume 599, 605-610 (2021). DOI: https://doi.org/10.1038/s41586-021-04122-w

http://www.uni-bayreuth.de/

Media Contact

Christian Wißler Pressestelle
Universität Bayreuth

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Schutz vor Corona: Erfahrung ist beim Immunsystem nicht immer ein Vorteil

Bei der Corona-Impfung basiert eine gute Impfreaktion auf naiven Immunzellen, bereits existierende Gedächtniszellen sind eher nachteilig, wie ein Forschungsteam des Exzellenzclusters PMI zeigt. Wer viele Infektionen mit gewöhnlichen Erkältungsviren durchgemacht…

Neue bwHealthApp macht die Nutzung von Fitnessarmbändern für ärztliche Behandlung möglich

Mit einer neuen App will die Fakultät Informatik der Hochschule Reutlingen die Diagnose und Therapie in der Medizin verbessern und kostengünstiger machen. Dabei setzen die Informatiker um Prof. Dr. Christian…

Vorklinische Entwicklung des optischen Cochlea Implantats

Das Land Niedersachsen und die VolkswagenStiftung bewilligen Forschenden der UMG und des Göttinger Exzellenzclusters Multiscale Bioimaging Mittel über 1 Million Euro aus dem „SPRUNG“ (vormals: „Niedersächsisches Vorab“) zur Entwicklung des…

Partner & Förderer