Von der Natur inspirierte Oberflächen aus dem 3D-Drucker

Das Bild zeigt schematisch die Nachahmung der winzigen Tannenbäume, die den Morpho-Schmetterlingen ihre Farbe verleihen.
© Zyla et al.

Mittels Laserstrahlung können Forschende winzige Strukturen mit höchster Präzision drucken. Eine Methode, um die Superkräfte von Tieren und Pflanzen nachzuahmen und sie für die Technik zugänglich zu machen.

Bild vergrößern…
Farbe entsteht durch hierarchisch aufgebaute Strukturen: das Resultat für einen Morpho-didius-Schmetterling (links) und für biologisch inspirierte Strukturen (rechts), hergestellt mittels Zwei-Photonen-Polymerisation.
© Zyla et al.

Um auch in extremen Habitaten überleben zu können, haben viele Tiere und Pflanzen im Laufe der Evolution Fähigkeiten entwickelt, die man nur von Superhelden aus Filmen kennt. Meist beruhen sie auf den außergewöhnlichen Eigenschaften ihrer Oberflächen. Das Nachahmen dieser Eigenschaften birgt ein großes Potenzial für die Technik zur Entwicklung neuer Produkte oder zur Lösung technischer Probleme. Einem Forschungsteam aus Bochum und Kiel ist es gelungen, mittels einer hochpräzisen 3D-Drucktechnik die Strukturfarbe der berühmten blauen Morpho-Schmetterlinge nachzuahmen. Über ihre Erkenntnisse zur sogenannten Zwei-Photonen-Polymerisation, kurz 2PP, berichten die Forschenden im Journal of Optical Microsystems vom 2. September 2022.

An der Arbeit aus dem Bereich der Biomimetik waren Forschende des Lehrstuhls für Laseranwendungstechnik der Ruhr-Universität Bochum (RUB) um Prof. Dr. Andreas Ostendorf und Prof. Dr. Cemal Esen sowie der Arbeitsgruppe „Funktionelle Morphologie und Biomechanik“ der Christian-Albrechts-Universität zu Kiel (CAU) um Prof. Dr. Stanislav Gorb beteiligt.

3D-Druck zur Herstellung biologisch inspirierter Tannenbäume

Die 2PP ist ein laserbasiertes Druckverfahren, welches die dreidimensionale Bearbeitung von lichtempfindlichen Harzen ermöglicht. Anders als bei herkömmlichen Drucktechniken ist es möglich, komplexe 3D-Strukturen mithilfe von virtuellen Computermodellen ohne die Verwendung von Stützstrukturen zu realisieren. Einzelne Strukturmerkmale können in diesem Zusammenhang bis zu unter 100 Nanometer klein sein. Dies entspricht in etwa einem Tausendstel der Dicke eines menschlichen Haars.Durch die 2PP-Drucktechnik gelang es den Forschenden, hierarchisch aufgebaute Strukturen auf Mikro- und Nanometerebene herzustellen, um die Strukturfarbe der blauen Morpho-Schmetterlinge mitsamt ihren außergewöhnlichen optischen Eigenschaften zu imitieren. Bei den Schmetterlingen selbst wird die Farbe durch winzige, tannenbaumähnliche Strukturen auf ihrer Flügeloberfläche hervorgerufen. Komplexe physikalische Phänomene zwischen Licht und den Tannenbäumen machen es zudem möglich, die blaue Farbe fast winkelunabhängig wahrzunehmen. „Dies ist insofern erstaunlich, da Farbe normalerweise regenbogenartig erscheint, wenn sie durch ähnliche physikalische Phänomene, wie etwa Lichtbrechung an Strukturen, entsteht“, so Mitautor Gordon Zyla.

Biologisch inspirierte Strukturfarben für die Fälschungssicherheit

In der aktuellen Arbeit konnten die Forschenden die von den Schmetterlingen inspirierten Strukturen so umgestalten, dass die resultierende winkelunempfindliche blaue Farbe gleichmäßig oder nur aus bestimmten Richtungen beobachtet werden kann. Zu diesem Zweck analysierten sie zunächst die optischen Eigenschaften und die Morphologie der Flügeloberfläche eines Morpho-didius-Schmetterlings an der CAU. Daraus leiteten sie ab, dass sie die Richtung, in der die winkelunempfindliche Farbe erscheint, steuern können, indem sie die Geometrie ihrer zuvor entwickelten Strukturen nur auf der Mikroskala verändern, jedoch weiterhin die Strukturen des Schmetterlings auf der Nanoskala imitieren.

Die von den Autoren vorgeschlagenen neuartigen Designs eignen sich zum Beispiel für die Herstellung hochkomplexer Fälschungsschutzmerkmale. Ihre Arbeit zeigt darüber hinaus das große Potenzial des 2PP-Verfahrens im Forschungsbereich Biomimetik. Durch die Verwendung neuartiger lichtempfindlicher Materialien könnte eine große Vielfalt funktioneller Strukturen aus der Natur auf diese Weise für ihren Einsatz in der Technik untersucht werden. Zu den Superkräften im Tier- und Pflanzenreich gehören etwa die verbesserte Haftung oder besondere Verschleißfestigkeit gegenüber diversen anderen Oberflächen, die Superhydrophobie, die man beim Lotuseffekt beobachten kann, oder bestimmte Färbungen, die als Warnsignale, zur Tarnung oder intrasexuellen Kommunikation verwendet werden.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Cemal Esen
Lehrstuhl für Laseranwendungstechnik
Fakultät für Maschinenbau
Ruhr-Universität Bochum
Tel. +49 234 32 25697
E-Mail: esen@lat.rub.de

Prof. Dr. Stanislav N. Gorb
Arbeitsgruppe – Funktionelle Morphologie und Biomechanik
Christian-Albrechts-Universität zu Kiel
Tel. +49 431880 4513
E-Mail: sgorb@zoologie.uni-kiel.de

Originalpublikation:

Gordon Zyla, Alexander Kovalev, Cemal Esen, Andreas Ostendorf, Stanislav Gorb: Two-photon polymerization as a potential manufacturing tool for biomimetic engineering of complex structures found in nature, in: Journal of Optical Microsystems, 2022, DOI: 10.1117/1.JOM.2.3.031203, https://www.spiedigitallibrary.org/journals/journal-of-optical-microsystems/volu…

http://www.ruhr-uni-bochum.de/

Media Contact

Meike Drießen Dezernat Hochschulkommunikation
Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Maschinenbau

Der Maschinenbau ist einer der führenden Industriezweige Deutschlands. Im Maschinenbau haben sich inzwischen eigenständige Studiengänge wie Produktion und Logistik, Verfahrenstechnik, Fahrzeugtechnik, Fertigungstechnik, Luft- und Raumfahrttechnik und andere etabliert.

Der innovations-report bietet Ihnen interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Automatisierungstechnik, Bewegungstechnik, Antriebstechnik, Energietechnik, Fördertechnik, Kunststofftechnik, Leichtbau, Lagertechnik, Messtechnik, Werkzeugmaschinen, Regelungs- und Steuertechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern-befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer