Unterwasser-Mikrofon setzt auf Hören wie ein Wal
Forscher an der Universität Stanford haben ein Unterwasser-Mikrofon (Hydrofon) entwickelt, das ein enormes Geräuschspektrum messen kann. Das umfasst Frequenzen über 17 Oktaven und Lautstärken vom flüsterleisen Hintergrundgeräusch im Ozean bis hin zu einer TNT-Explosion in unmittelbarer Nähe. Im Gegensatz zu klassischen Hydrofonen funktioniert das System zudem bei beliebiger Wassertiefe. Um all das zu ermöglichen, hat sich das Team an einem natürlichen Vorbild orientiert – dem Gehör von Orcas.
Das Gehör der Meeressäuger ist ein ideales Vorbild. „Sie hatten Millionen Jahre, um ihr Sonar zu perfektionieren, und das merkt man“, sagt Onur Kilic, Elektrotechnik-Postdoc in Stanford. So deckt das Gehör der Tiere einen gewaltigen Frequenzbereich ab und funktioniert auch bei größerer Tiefe.
Nano-Tricks
Schall besteht aus Druckwellen, den Ohren ebenso wie normale Mikrofone mithilfe schwingender Membranen messen. Dieses Prinzip scheitert unter Wasser bald. Denn je zehn Meter Tiefe steigt der Druck um eine Atmosphäre – bis auf rund 1.100 atm im Mariannengraben, der tiefsten Stelle der Weltmeere. „Damit ein Sensor kleine Fluktuationen bei so einem großen Spektrum an Außendruck messen kann, muss er mit Wasser gefüllt sein“, so Kilic. Die Forscher haben daher in eine nur 500 Nanometer Dicke Membran eine Anordnung von Nanolöchern gebohrt.
Diese Löcher lassen nicht nur Wasser durch, damit der Druck auf beiden Seiten der Membran gleich ist. Sie sind gleichzeitig ein wichtiger Teil des Messsystems. „Die Verschiebungen des Diaphragmas bei den leisesten Geräuschen im Ozean liegt bei einem Hundertausendstel Nanometer“, betont der Elektrotechniker. Um diese winzigen Bewegungen zu erfassen, setzt das System auf Laserlicht, das eigentlich einfach durch die Membran scheinen würde. Doch die Löcher haben eine Größe im Bereich der Wellelänge des Lichts, was zu einer Interferenz und letztlich der Reflexion des Lichts führt.
Dreifach-Membran
Das Mikrofon nutzt zudem drei unterschiedlich große Membranen, die auf verschiedene Lautstärken abgestimmt sind. Eine erfasst dabei sehr leise Geräusche, die einem Flüstern entsprechen, eine weitere sehr laute wie eben eine Explosion. Die dritte Membran deckt die Mitte des Lautstärkespektrums ab. Dabei fungieren die Komponenten als ein Sensor, der insgesamt über einen Bereich von 160 Dezibel funktioniert. Ähnlich dem Vorbild Walgehör kann der erbsengroße Sensor dabei Frequenzen von einem Hertz bis zu 100 Kilohertz wahrnehmen.
Media Contact
Weitere Informationen:
http://www.stanford.eduAlle Nachrichten aus der Kategorie: Interdisziplinäre Forschung
Aktuelle Meldungen und Entwicklungen aus fächer- und disziplinenübergreifender Forschung.
Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Mikrosystemforschung, Emotionsforschung, Zukunftsforschung und Stratosphärenforschung.
Neueste Beiträge
Mehr als Ernährung: Die Qualität wird durch Bestäuber bestimmt
Ein neuer Blick auf die Besonderheiten von Kulturpflanze-Bestäuber-Wechselwirkungen Die Bestäubung durch Tiere trägt zu einem Drittel der weltweiten Nahrungsmittelproduktion bei, doch inwieweit die Identität von Bestäubern, Pollen und Kulturpflanzensorten die…
Enhancing Plant-Based Foods‘ Texture with Field Beans
Forschende des Leibniz-Instituts für Lebensmittel-Systembiologie an der Technischen Universität München haben erstmals untersucht, wie aus Ackerbohnen gewonnene Proteinstrukturen auf ein zelluläres Modellsystem für orale, menschliche Tastzellen wirken. Hautsinneszellen dieser Art…
Biodiversität, Klima und Lebensgrundlagen: Nachhaltige Praktiken für eine grünere Erde
Forschungsteam mit Beteiligung der Universität Göttingen ruft Politik zu mehr Handeln auf Baumkulturen – zum Beispiel Äpfel, Kirschen, Oliven, Nüsse, Kaffee und Kakao – bedecken weltweit mehr als 183 Millionen…