Menschen können einzelnes Photon sehen

Artist’s interpretation of an entangled photon-pair entering the human eye IMP

Trotz zahreicher Studien, die seit über siebig Jahren zu diesem Thema durchgeführt wurden, konnte die absolute Untergrenze der menschlichen Sehfähigkeit bisher nicht mit Sicherheit bestimmt werden. Aus älteren Untersuchungen weiß man, dass dunkel-adaptierte Versuchspersonen Lichtblitze wahrnehmen können, die aus fünf bis sieben Photonen bestehen. Ob allerdings ein einzelnes Photon sichtbar ist, blieb lange Zeit ungeklärt.

Ein interdisziplinäres Team unter der Leitung des Quantenphysikers Alipasha Vaziri konnte diese Frage nun in aufwändigen Versuchsreihen positiv beantworten. Vaziri ist Associate Professor und Leiter des Laboratory of Neurotechnology & Biophysics an der Rockefeller University und leitet gleichzeitig eine Arbeitsgruppe am IMP in Wien, wo die Experimente mit freiwilligen Probanden durchgeführt wurden.

Erstaunliche Präzision trotz widriger Verhältnisse

“Wir konnten erstmals zeigen, dass das menschliche Auge tatsächlich imstande ist, ein einzelnes Photon zu erkennen”, erklärt Alipasha Vaziri. “das ist wirklich bemerkenswert und zeigt, bis zu welch erstaunlicher Effizienz die Evolution die Empfindlichkeit der Sinnesorgane vorantreiben kann, in diesem Fall bis zur Einheit der physikalischen Größe selbst.”

Was den Physiker besonders fasziniert: „Hier trifft ein Photon, die kleinste Einheit des Lichts, auf ein biologisches System, bestehend aus Milliarden von Zellen. Das extrem schwache Signal durchläuft mehrere Schritte biologischer Singnalverarbeitung bis hin zur bewussten Wahrnehmung und geht trotz aller möglichen Quellen des Rauschens nicht verloren. Zu allem Überfluss ist die Umgebung warm und feucht – normalerweise ein wahrer Albtraum für Messungen auf der Quantenebene. Jeder von Menschen gebaute Detektor müsste stark gekühlt und sorgfältig abgeschirmt werden, um solche Ergebnisse zu liefern.”

Quanten-Lichtquelle erzeugt verschränkte Photonen

Frühere Versuche waren daran gescheitert, dass weder die ausgereifte Technologie zur Verfügung stand noch die passenden psycho-physikalischen Ansätze. Vaziri: “Es ist nicht einfach, Licht zu erzeugen, das aus genau einem oder einer definierten Anzahl von Photonen besteht. In Licht aus klassischen Quellen ist die Photonenenzahl statistisch verteilt. Durch Dimmen kann man nur die mittlere Photonenzahl eines Lichtpulses verringern, die exakte Anzahl ist nicht bestimmbar.”

Das Fehlen geeigneter Lichtquellen war demnach eine große Herausforderung bei der Entwicklung des Versuchsansatzes. Die Forscher lösten das Problem, indem sie eine Lichtquelle konstruierten, die bisher nur im Bereich der Quantenoptik und Quanteninformation zum Einsatz kam. Das Prinzip basiert auf der sogenannten spontanen parametrischen Fluoreszenz, bei der ein energiereiches Photon in einem optischen Kristall spontan in zwei verschränkte Photonen mit niedrigerer Energie zerfällt, wobei die Summe der Energien der beiden Photonen der des ursprünglichen entspricht. Im Versuch wurde jeweils eines der Photonen zum Auge der Versuchsperson geleitet, während das andere gleichzeitig auf einen Detektor traf.

„Das Set-up dieser Kamera war eine harte Nuss“, erzählt Co-Erstautor Jonathan Tinsley, der als Master-Student einen Teil der Experimente durchführte. „Außerdem mussten wir für die Versuche spezielle Dunkelkammern bauen, die Licht und Geräusche perfekt abschirmten.“ Insgesamt wurde etwa neun Monate an dem Versuchsaufbau gearbeitet.

Erster Hinweis auf Wahrnehmung einzelner Photonen

Für die Auswertung der Versuche wählten die Forscher ein Protokoll, das in diesem Zusammenhang erstmals zum Einsatz kam. Sie bedienten sich der Methode der erzwungenen Wahl (two-alternative forced-choice, 2AFC), bei der die Probanden bei jedem Durchgang aus zwei Alternativen wählen müssen. Konkret mussten sich die Versuchspersonen zwischen zwei Zeitintervallen entscheiden, von denen nur in einem ein Photon aufblitzte. Mehr als 30 000 solcher Durchgänge wurden schließlich ausgewertet und zeigten mit statistischer Signifikanz, dass einzelne Photonen vom menschliche Auge wahrgenommen werden können.

Neben dieser Erkenntnis lieferten die Versuche ein weiteres unerwartetes Ergebnis: die Chance, ein Photon wahrzunehmen, stieg an, wenn kurz zuvor bereits ein Photon ins Auge eingetroffen war. In Folgeexperimenten wollen die Forscher klären, wie dieses Phänomen zustande kommt. Daneben eröffnen sich zahlreiche weitere Fragen: Wie können biologische Systeme derartige Empfindichkeit und Präzision entwickeln? Wie werden die schwachen Signale aus dem Hintergrundrauschen herausgefiltert? Sind die beobachteten Phänomene auf den Sehsinn beschränkt oder liefern sie allgemeine Erkenntnisse zur Signalverarbeitung in Lebewesen? Alipasha Vaziri und sein Team werden diesen Fragen in den kommenden Jahren auf den Grund gehen.

Originalpublikation
Jonathan N. Tinsley, Maxim I. Molodtsov, Robert Prevedel, David Wartmann, Jofre Espigulé-Pons, Mattias Lauwers and Alipasha Vaziri: Direct Detection of a Single Photon by Humans. Nature Communications, 19 July, 2016. DOI: 10.1038/ncomms12172.

Pressekontakt IMP
Dr. Heidemarie Hurtl
IMP Communications
Research Institute of Molecular Pathology
+43 (0)1 79730 3625
hurtl@imp.ac.at

Pressekontakt Rockefeller University
Zach Veilleux
Communications and Public Affairs
The Rockefeller University
+1-212-327-8982 o
+1-347-978-4723 m
zveilleux@rockefeller.edu

http://www.imp.ac.at

Media Contact

Dr. Heidemarie Hurtl idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung

Aktuelle Meldungen und Entwicklungen aus fächer- und disziplinenübergreifender Forschung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Mikrosystemforschung, Emotionsforschung, Zukunftsforschung und Stratosphärenforschung.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Definierte Blockade

Enzymatisches Photocaging zur Erforschung der Genregulation durch DNA-Methylierung Das Anknüpfen und Abspalten von Methylgruppen an die DNA spielt eine wichtige Rolle bei der Genregulation. Um diese Mechanismen genauer erforschen zu…

Ein Mikroskop für alle

Junges Jenaer Forschungsteam 
entwickelt Optik-Baukasten für Forschung und Ausbildung. Mikroskope, die biologische Prozesse sichtbar machen, kosten viel Geld, stehen in Speziallaboren und erfordern hoch qualifiziertes Personal. Damit neue Ansätze für…

Ordnung im Chaos finden

Wissenschaftler:innen klären die Struktur von glasbildenden Proteinen in Schwämmen auf. Schwämme gehören zu den ältesten Tierarten der Erde, die in vielen verschiedenen Gewässern leben, von Seen bis hin zu tiefen…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close