Magnetresonanz im Tischgeräteformat revolutioniert Diagnostik und Materialanalyse

Das Team des neuen SFB möchte das Volumen von Hochleistungs-Magnetresonanzsystemen um mehr als den Faktor 200 verkleinern. (Foto: Amadeus Bramsiepe, KIT)

Neuer Sonderforschungsbereich SFB 1527 „HyPERiON“ entwickelt kompakte Hochleistungsgeräte, die einen breiten Einsatz ermöglichen.

Im SFB HyPERion, den das Karlsruher Instituts für Technologie (KIT) koordiniert, entwickeln Forschende des KIT und der Universitäten Kaiserslautern, Konstanz und Stuttgart gemeinsam eine Technologie für kompakte Hochleistungs-Magnetresonanz. Diese könnte zukünftig in der chemischen und pharmazeutischen Industrie, in Arztpraxen oder auch an Grenzübergängen eingesetzt werden. Die Deutsche Forschungsgemeinschaft (DFG) fördert den interdisziplinären Verbund ab dem 1. Juli 2022 über vier Jahre mit mehr als 10,6 Millionen Euro.

Im SFB HyPERion, den das Karlsruher Instituts für Technologie (KIT) koordiniert, entwickeln Forschende des KIT und der Universitäten Kaiserslautern, Konstanz und Stuttgart gemeinsam eine Technologie für kompakte Hochleistungs-Magnetresonanz. Diese könnte zukünftig in der chemischen und pharmazeutischen Industrie, in Arztpraxen oder auch an Grenzübergängen eingesetzt werden. Die Deutsche Forschungsgemeinschaft (DFG) fördert den interdisziplinären Verbund ab dem 1. Juli 2022 über vier Jahre mit mehr als 10,6 Millionen Euro.

Magnetresonanz ist die chemisch spezifischste und zugleich vielseitigste Messmethode für detaillierte Informationen über Struktur und Funktion molekularer Materie. Deshalb ist sie die grundlegende Technik für chemische, biologische oder materialwissenschaftliche Charakterisierungen. Die geringe Empfindlichkeit und der relativ hohe Spezialisierungsgrad stehen einem flächendeckenden Einsatz aber im Weg. Der Sonderforschungsbereich „Kompakte Hochleistungs-Magnetresonanzsysteme – HyPERiON“ (High Performance Compact Magnetic Resonance) will dies ändern, indem er konventionelle Konzepte entlang der gesamten Signalverarbeitungskette hinterfragt. Ziel ist es, Empfindlichkeit, Belastbarkeit und Anwendbarkeit der Magnetresonanz gleichermaßen zu verbessern. Das Team um SFB-Sprecher Professor Jan G. Korvink vom Institut für Mikrostrukturtechnik (IMT) des KIT möchte das Volumen von Hochleistungs-Magnetresonanzsystemen von zwei Kubikmetern auf die Größe eines 10-Liter-Eimers reduzieren – also um mehr als den Faktor 200. Dies würde ihre Anwendung aus dem Labor in chemische und pharmazeutische Fabriken, Arztpraxen oder etwa an Grenzübergänge ermöglichen und die Technologie damit universell nutzbar machen. „Letztendlich geht es um die Erforschung neuer und aufregender Anwendungen im Bereich der Chemie, der Biologie bis hin zum Bereich chemischer Verfahrenstechnik“ so Korvink.

Miniaturisierung macht Magnetresonanz auch für kleinere Budgets nutzbar

Um seine Ziele zu erreichen, konzentriert sich der SFB auf die Miniaturisierung sämtlicher an der Magnetresonanztechnik beteiligten Komponenten. Dies sindsupraleitende Magnete, Kühlsysteme, Hochgeschwindigkeitselektronik, Magnetresonanzsensoren, Geräte für ultraschnelle Datenübertragung sowie Geräte zur Hyperpolarisation des Kernspins von Materialien und biologischen Proben. „Die Integration all dieser Technologien in eine moderne, tragbare Plattform wird dazu führen, dass wir Anwendungen von gesellschaftlicher Relevanz vorantreiben können, etwa in der Diagnostik von Krankheiten, beim Einsatz von medizinischen Implantaten oder bei der Entdeckung von Medikamenten“, erklärt SFB-Sprecher Korvink. Die Beteiligten des SFB gehen davon aus, dass ihre Forschungsergebnisse die schnelle und hochauflösende Charakterisierung von Materialien mittels magnetischer Resonanz auch für kleinere Budgets verfügbar machen und insgesamt die Entwicklungen in der Chemie und den Materialwissenschaften vorantreiben werden.

Schnelle Suche nach den besten Materialien

In vielerlei Hinsicht hängt das gesellschaftliche Wohlergehen entscheidend vom Zugang zu optimalen Materialien ab. Aber die Anforderungen sind komplex und umfassen nicht nur die Funktion des Materials, sondern auch seine Auswirkungen auf unsere Biologie, auf die Umwelt und darauf, wie das Material wiedergewonnen oder abgebaut werden kann. „Wenn die Materialcharakterisierung schnell und hochauflösend für eine sehr große Anzahl von Varianten mit nur winzigen Proben durchgeführt werden kann und wir die Tests auch unter Betriebsbedingungen durchführen und Abbauprozesse untersuchen können, dann haben wir die Chance, die besten Ausgangsmaterialien zu finden, die unseren Erwartungen entsprechen. Das gilt insbesondere auch im Hinblick auf einen minimalen CO2-Fußabdruck.“ Jan Korvink ist überzeugt: „HyPERiON wird die Möglichkeiten der Materialcharakterisierung grundlegend verändern und eine neue Generation von jungen Forschenden sowie Ingenieurinnen und Ingenieuren in ihrer Anwendung für gesellschaftliche Herausforderungen schulen.“

Neben HyPERiON ist das KIT außerdem an einem weiteren neuen Sonderforschungsbereich beteiligt, der ebenfalls am 1. Juli 2022 startet: Der SFB 1537 „ECOSENSE“ unter Federführung der Universität Freiburg möchte präziser und schneller kritische Veränderungen im Ökosystem Wald, die durch den Klimawandel auftreten, erkennen und vorhersagen. (rli)

Kontakt für diese Presseinformation:

Regina Link, Pressereferentin, Tel.: +49 721 608-41158, E-Mail: regina.link@kit.edu

Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 9 800 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 22 300 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen. Das KIT ist eine der deutschen Exzellenzuniversitäten.

Diese Presseinformation finden Sie mit Foto zum Download unter: https://www.kit.edu/kit/pi_2022_061_magnetresonanz-im-tischgerateformat-revoluti…

Originalpublikation:

https://www.kit.edu/kit/pi_2022_061_magnetresonanz-im-tischgerateformat-revoluti…

Media Contact

Monika Landgraf Strategische Entwicklung und Kommunikation - Gesamtkommunikation
Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung

Aktuelle Meldungen und Entwicklungen aus fächer- und disziplinenübergreifender Forschung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Mikrosystemforschung, Emotionsforschung, Zukunftsforschung und Stratosphärenforschung.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Mit einem Klick erfahren, wo es im Wald brennt

Satellitengestützte Erkennung von Waldbränden im Waldmonitor Deutschland jetzt online. Seit heute kann jedeR BürgerInnen verfolgen, ob und wo es in Deutschlands Wäldern brennt. Der Waldmonitor Deutschland [http://Waldmonitor-deutschland.de] zeigt jetzt frei…

Komplexe Muster: Eine Brücke vom Großen ins Kleine schlagen

Ein neue Theorie ermöglicht die Simulation komplexer Musterbildung in biologischen Systemen über unterschiedliche räumliche und zeitliche Skalen. Für viele lebenswichtige Prozesse wie Zellteilung, Zellmigration oder die Entwicklung von Organen ist…

Neuartige Membran zeigt hohe Filterleistung

Partikel aus alltäglichen Wandfarben können lebende Organismen schädigen. Für Wand- und Deckenanstriche werden in Haushalten meistens Dispersionsfarben verwendet. Ein interdisziplinäres Forschungsteam der Universität Bayreuth hat jetzt zwei typische Dispersionsfarben auf…

Partner & Förderer