Bessere Suche nach Ursache für Erbkrankheiten

Nils Wagner, Erstautor der Studie und Doktorand am Lehrstuhl für Computational Molecular Medicine
(c) Dennis Gankin / TUM

Bei rund der Hälfte aller seltenen Erberkrankungen kann deren Ursache bislang nicht geklärt werden.

Ein Münchner Forschungsteam hat einen Algorithmus entwickelt, der die Auswirkungen von genetischen Mutationen auf die Bildung der RNA um das Sechsfache genauer vorhersagt als bisherige Modelle. Dadurch werden die genetischen Ursachen von seltenen Erberkrankungen und Krebs häufiger erkannt.

Genetische Variationen treten relativ häufig auf – durchschnittlich ist jede tausendste Stelle des DNA-Strangs eines Menschen betroffen. In seltenen Fällen können diese Veränderungen dazu führen, dass die RNA und die daraus gebildeten Proteine fehlerhaft sind. Dadurch können beispielsweise Fehlfunktionen in einzelnen Organen auftreten. Bei Verdacht auf eine seltene Erkrankung helfen mittlerweile oft computergestützte Diagnoseprogramme bei der Suche nach möglichen genetischen Ursachen weiter. Dazu wird das Genom mithilfe von Algorithmen analysiert, um herauszufinden, ob Variationen auf den Genen und Fehlfunktionen in bestimmten Teilen des Körpers zusammenhängen.

Interdisziplinäres Forschungsprojekt

Unter der Leitung von Julien Gagneur, Professor für Computational Molecular Medicine an der TUM und Forschungsgruppenleiter Computational Molecular Medicine bei Helmholtz Munich, hat ein interdisziplinäres Team aus den Bereichen Informatik und Medizin ein neues Modell entwickelt, das im Vergleich zu seinen Vorgängern deutlich besser vorhersagt, welche Variationen auf der DNA zu fehlerhaft gebildeten RNA-Strängen führen.

„Mit den bereits etablierten Methoden der DNA-Analyse kann bei ungefähr der Hälfte unserer Patienten eine sichere Diagnose gestellt werden“, sagt Dr. Holger Prokisch, Mitautor der Studie sowie Gruppenleiter am Institut für Humangenetik der TUM und bei Helmholtz Munich, „Bei den übrigen benötigen wir unbedingt Modelle, die eine Vorhersage verbessern. Unser neu entwickelter Algorithmus kann hierbei einen wichtigen Beitrag leisten.“

Fokus des Modells liegt auf dem Splicing

In ihrer Studie haben die Forschenden Variationen betrachtet, die den Umwandlungsprozess von DNA in RNA und schließlich die Bildung von Proteinen in spezifischen Geweben beeinflussen. Der Fokus lag dabei auf dem Splicing – einem Vorgang in den Zellen, bei dem die RNA so zugeschnitten wird, dass später die Bauanleitung für das Protein abgelesen werden kann. Liegen Variationen auf der DNA vor, kann dieser Prozess gestört werden und dazu führen, dass entweder zu viel oder zu wenig aus den RNA-Strängen herausgeschnitten wird. Fehler im Splicing-Prozess gelten als eine der häufigsten Ursachen für die Fehlbildung von Proteinen und Erberkrankungen.

Deutlich höhere Genauigkeit als vorherige Studien

Um Aussagen über mögliche Zusammenhänge zwischen der Variation einzelner Gene und Fehlfunktionen in bestimmten Geweben treffen zu können, hat das Team auf einen bereits bestehenden Datensatz zurückgegriffen. Dieser enthält DNA- und RNA-Proben aus 49 Geweben von insgesamt 946 Individuen.

Im Vergleich zu vorherigen Studien betrachtete das Team jede Probe zunächst dahingehend, ob und inwiefern sich fehlerhaftes Splicing durch eine Variation auf der DNA überhaupt in bestimmten Geweben durch Fehlfunktionen äußert. So kann ein Protein relevant sein für spezielle Bereiche im Herzen, im Gehirn hingegen kommt es unter Umständen gar keiner Funktion nach.

„Hierfür erstellten wir eine gewebespezifische Splicing-Karte, in der wir quantifizierten, welche Stellen auf der RNA für das Splicing in einem bestimmten Gewebe wichtig sind. Durch unser Vorgehen konnten wir unser Modell auf die biologisch relevanten Kontexte reduzieren. Die von uns verwendeten Haut- und Blutproben ermöglichen uns aber auch Rückschlusse auf schwer zugängliches Gewebe, wie dem Gehirn oder dem Herzen zu ziehen“, so Nils Wagner, Erstautor der Studie und Doktorand am Lehrstuhl für Computational Molecular Medicine an der TUM.

Bei der Analyse wurde jedes Gen berücksichtigt, das mindestens eine seltene genetische Mutation trägt und gleichzeitig relevant für die Bildung von Proteinen ist. Neben den proteincodierenden Bereichen auf der RNA gibt es Abschnitte, die wichtig sind für andere Prozesse in unseren Zellen. Diese wurden in der Studie nicht betrachtet. Dadurch ergab sich eine Gesamtzahl von fast 9 Millionen untersuchten seltenen genetischen Muationen.

„Durch unser neu entwickeltes Modell konnten wir die Genauigkeit bei der Vorhersage von fehlerhaftem Splicing im Vergleich zu vorherigen Modellen um das Sechsfache steigern. Bei einer Erkennungsrate von 20 Prozent erreichen bisherige Algorithmen eine Genauigkeit von 10 Prozent. Unser Modell schafft bei gleicher Erkennungsrate eine Genauigkeit von 60 Prozent“, sagt Prof. Julien Gagneur.

Genauigkeit und Erkennungsrate sind wichtige Kennzahlen, um die Leistungsfähigkeit von Modellen vorherzusagen. Die Genauigkeit gibt dabei an, wie viele der Variationen, die vom Modell vorhergesagt wurden, tatsächlich zu fehlerhaftem Splicing führen. Die Erkennungsrate zeigt, wie viele der Variationen, von allen auf den dann vorhandenen Variationen, die zu fehlerhaftem Splicing führen, vom Modell gefunden werden konnten.

„Ein so großer Fortschritt bei der Genauigkeit ist uns gelungen, indem wir zum einen den Splicing-Prozess gewebespezifisch betrachtet und zum anderen direkte Splicing Messungen aus einfach zugänglichen Geweben wie Blut und Hautzellen benutzt haben, um Splicing-Fehler in nicht zugänglichen Geweben wie dem Herzen oder dem Gehirn vorherzusagen.“, so Prof. Julien Gagneur.

Praktischer Einsatz des Algorithmus

Das Modell wird im Rahmen des europäischen Forschungsprojekts „Solve – RD – solving the unsolved rare diseases“ eingesetzt. Die Initiative hat sich dabei zum Ziel gesetzt, durch einen breiten Austausch von Wissen die Diagnosemöglichkeiten seltener Erkrankungen zu verbessern. So hat das Team der TUM bereits 20.000 DNA-Sequenzen von insgesamt 6.000 betroffenen Familien analysiert.

Darüber hinaus soll es durch das Modell zukünftig möglich sein, Leukämie und ihre verschiedenen Formen leichter zu diagnostizieren. Hierfür untersuchen die Forschenden aktuell 4.200 DNA- und RNA-Proben von Leukämie-Erkrankten.

Weitere Informationen

Prof. Julien Gagneur kam 2016 als Assistant Professor an die TUM. 2020 übernahm er die Professur für Computational Molecular Medicine. Dabei erforscht er die genetischen Grundlagen der Genregulation und ihre Auswirkungen auf Krankheiten mithilfe statistischer Algorithmen und maschineller Lernverfahren. Gleichzeitig ist er Forschungsgruppenleiter bei Helmholtz Munich.

Zusammen mit Holger Prokisch, Gruppenleiter am Institut für Humangenetik der TUM und bei Helmholtz Munich, entwickelt Prof. Julien Gagneur darüber hinaus Strategien, um die Ursache genetischer Störungen zu identifizieren.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Julien Gagneur
Technische Universität München
Professur für Computational Molecular Medicine
Tel: +49 (89) 289-19411
julien.gagneur@tum.de

Dr. Holger Prokisch
Klinikum rechts der Isar der Technischen Universität München
Institut für Humangenetik
Tel: +49 89 3187-2890
holger.prokisch@tum.de

Originalpublikation:

Wagner, N., Çelik, M. H., Hölzlwimmer, F. R., Mertes, C., Prokisch, H., Yépez, V. A., & Gagneur, J. (2023). Aberrant splicing prediction across human tissues. Nature Genetics, 1-10.

Weitere Informationen:

https://www.tum.de/aktuelles/alle-meldungen/pressemitteilungen/details/bessere-s…

Media Contact

Julia Rinner Corporate Communications Center
Technische Universität München

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung

Aktuelle Meldungen und Entwicklungen aus fächer- und disziplinenübergreifender Forschung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Mikrosystemforschung, Emotionsforschung, Zukunftsforschung und Stratosphärenforschung.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Das Auto als rollender Supercomputer

Moderne Autos sind mit Elektronik vollgepackt. Das Management der vielen Rechner und Assistenzsysteme ist komplex, zudem erhöhen die Kabelbäume das Gewicht der Fahrzeuge. Fraunhofer-Forschende arbeiten im Verbundprojekt CeCaS an einer…

Digitaler Zwilling für flexible Postsendungen

Biegeschlaffe Postsendungen mit flexibler Verpackung – sogenannte „Polybags“ – stellen Logistiker bei der automatischen Sortierung vor Probleme. Dank moderner Simulationsmethoden gibt es dafür nun eine breit anwendbare Lösung. Wer online…

Klebstoffe aus Federn

Klebstoffe beruhen fast immer auf fossilen Rohstoffen wie Erdöl. Fraunhofer-Forschende haben nun ein Verfahren entwickelt, mit dem der biobasierte Rohstoff Keratin erschlossen wird. Die leistungsfähige Protein-Verbindung ist beispielsweise in Hühnerfedern…

Partner & Förderer