Messbare Sicherheit bei der Datenübertragung

Prototyp einer Einzelphotonenquelle in zweidimensionalem Bornitrid für Quantenkommunikations-Anwendungen unter Weltraum-Bedingungen. Foto: Jürgen Scheere

Egal ob an der Supermarktkasse, beim Online-Banking oder auch beim Austausch von Informationen zwischen staatlichen Institutionen – die Übertragung sensibler Daten per Internet setzt immer ein bestimmtes Maß an Vertrauen voraus.

Denn sämtlichen Verschlüsselungssystemen liegen mathematische Prinzipien zugrunde und können mit entsprechender Rechenleistung theoretisch auch geknackt werden.

Deshalb entwickeln Wissenschaftler der Friedrich-Schiller-Universität Jena gemeinsam mit Kollegen der Technischen Universität Ilmenau und des Fraunhofer Instituts für Angewandte Optik und Feinmechanik in Jena Methoden, die auf physikalischen Grundsätzen basieren und somit weitaus sicherere Alternativen bieten.

Unterstützt werden sie dabei von der Thüringer Aufbaubank, welche die Forschergruppe „Ultrabreitbandige Hochfrequenz-Ansteuerung fasergekoppelter Laserdioden für polarisations- und zeitstempel-kodierte Einzelphotonen in der Quantenkommunikation“ (kurz: FastPhoton) seit dem 1. Januar für die kommenden zweieinhalb Jahre mit insgesamt 650.000 Euro finanziert.

Das Projekt, geleitet von Prof. Dr. Andreas Tünnermann von der Universität Jena, ist am Thüringer Innovationszentrum „InQuoSens“ angesiedelt, an dem Forscher beider Thüringer Universitäten elektronische und nanophotonische Lösungen für Quantenlichtquellen entwickeln – denn genau diese benötigen die neuen Verschlüsselungssysteme.

Informationsübertragung durch einzelne Photonen

Aktuell werden Daten häufig über Glasfaserkabel mit Licht übertragen. Dabei verwendet man für jedes Bit eine enorme Menge Photonen, da die Teilchen so gut detektiert und verstärkt werden können.

„Gelänge es aber, die Informationen in einzelnen Photonen zu übermitteln, dann kommen die Quanteneigenschaften der Teilchen zum Tragen, die rein physikalische Verschlüsselungsmethoden ermöglichen“, sagt Dr. Falk Eilenberger von der Universität Jena, der an der Forschergruppe beteiligt ist.

„Sicherheitstechnisch bedeutet das eine enorme qualitative Verbesserung. Denn ein Photon lässt sich nur genau einmal vermessen und ist somit nur für genau einen Empfänger lesbar – ein Zugriff von außen wäre nicht möglich beziehungsweise bliebe nicht unentdeckt. Sogar der Betreiber der Infrastruktur kann keine Daten herausziehen. So wird Sicherheit messbar.“

Die physikalischen Prinzipien für ein solches Vorgehen sind bereits seit einigen Jahrzehnten bekannt und bewiesen. Nun gilt es, konkrete potentielle Anwendungen unter die Lupe zu nehmen. Elementar hierfür sind geeignete Einzelphotonenquellen, die die notwendigen Photonen mit präzise definierten Eigenschaften produzieren. Auf deren Entwicklung, Verbesserung und Integration wollen sich die Wissenschaftler im Rahmen der Forschergruppe besonders konzentrieren.

Klein und robust

„Für Quantenkommunikation über sehr lange, interkontinentale Distanzen müssen die Lichtquellen auf Satelliten im All zum Einsatz kommen. Daher brauchen wir miniaturisierte Systeme, die auch unter extremen Bedingungen und nicht nur in einer sterilen Laborumgebung funktionieren“, informiert Eilenbergers Kollege Dr. Christian Helgert. „Optisch sind wir hierbei auf einem guten Weg – erste wenige Zentimeter große Einzelphotonenquellen, die auf 2D-Materialien basieren, haben wir bereits entwickelt.“

Der Fokus liege nun vor allem auf der elektronischen Integration solcher Systeme, um sie auch kosteneffizient gestalten zu können. „Die Kooperation zwischen Jena und Ilmenau ist hierfür ideal, denn wir haben die Expertise im opto-elektronischen Bereich – die Kollegen von der TU sind spezialisiert auf Hochleistungselektronik in rauer Umgebung“, sagt Eilenberger.

Trotz der erheblichen Fortschritte auf dem Gebiet der Quantenkommunikation gehen die Jenaer Experten davon aus, dass es noch einige Jahre dauern wird, bis Endnutzer Informationen auf diese Art und Weise austauschen. Dann aber könnten solche Systeme, die auf Einzelphotonen basieren, als sichere Alternative bei der Übertragung hochsensibler Daten zum Einsatz kommen.

Dr. Falk Eilenberger
Abbe Center of Photonics & Institut für Angewandte Physik der Universität Jena
Albert-Einstein-Straße 6, 07745 Jena
Tel.: 03641/947990
E-Mail: falk.eilenberger@uni-jena.de

Media Contact

Sebastian Hollstein idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-jena.de/

Alle Nachrichten aus der Kategorie: Informationstechnologie

Neuerungen und Entwicklungen auf den Gebieten der Informations- und Datenverarbeitung sowie der dafür benötigten Hardware finden Sie hier zusammengefasst.

Unter anderem erhalten Sie Informationen aus den Teilbereichen: IT-Dienstleistungen, IT-Architektur, IT-Management und Telekommunikation.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Entwicklung von High-Tech Tech-Schattenmasken für höchsteffiziente Si-Solarzellen

Das Technologieunternehmen LPKF Laser & Electronics AG und das Institut für Solarenergieforschung Hameln (ISFH) haben einen Kooperationsvertrag vereinbart: Gemeinsam werden sie Schattenmasken aus Glas von LPKF zur kostengünstigen Herstellung hocheffizienter…

Hitzewellen in den Ozeanen sind menschgemacht

Hitzewellen in den Weltmeeren sind durch den menschlichen Einfluss über 20 Mal häufiger geworden. Das können Forschende des Oeschger-Zentrums für Klimaforschung der Universität Bern nun belegen. Marine Hitzewellen zerstören Ökosysteme…

Was Fadenwürmer über das Immunsystem lehren

CAU-Forschungsteam sammelt am Beispiel von Fadenwürmern neue Erkenntnisse über die Regulation der angeborenen Immunantwort. Alle höheren Lebewesen verfügen über ein Immunsystem, das als biologischer Abwehrmechanismus den Körper vor Krankheitserregern und…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close