Innovationen für das Quantencomputing mit topologischen Isolatoren

Quantenpunkt-Kontaktstruktur aus dem topologischen Isolator Quecksilbertellurid (blau), der mit supraleitenden Elektroden (grün) kontaktiert wird. Mit ähnlichen Strukturen sollen künftig fundamentale Eigenschaften von topologischen Qubits erforscht werden.
Johannes Baumann / Universität Würzburg

Die Forschungsstandorte Jülich und Würzburg werden gemeinsam Quanten-Phänomene topologischer Materialien und deren Chancen für das Quantencomputing erkunden. Der Freistaat Bayern fördert das Vorhaben mit 13 Millionen Euro.

An der Entwicklung von Quantencomputern arbeiten weltweit viele Forschungsgruppen. Wenn derartige Computer einmal praxistauglich sind, hätte das viele Vorteile: Sie würden nur wenig Energie verbrauchen und mit einer extrem schnellen Rechenleistung und einer hohen Datensicherheit aufwarten.

Auf dem Weg dorthin stehen aber noch einige technische Hürden. Um hier weitere Fortschritte zu erreichen, intensivieren das Forschungszentrum Jülich und die Julius-Maximilians-Universität (JMU) Würzburg ihre langjährige Kooperation auf diesem Gebiet.

Die Partner setzen auf die Materialklasse der topologischen Isolatoren. Gemeinsam wollen sie topologische Materialsysteme erforschen und entwickeln, die sich als Bauelemente für Quantencomputer eignen.

Jülich und JMU: Zwei starke Partner vereint

Wolfgang Marquardt, Vorstandsvorsitzender des Forschungszentrums Jülich, und der damalige JMU-Präsident Alfred Forchel, hatten den entsprechenden Kooperationsvertrag im März 2021 unterzeichnet.

„Die Kooperation mit Jülich bietet der JMU eine große Chance“, so Alfred Forchel. „Auf den Gebieten Festkörperphysik, Halbleiterphysik und topologische Materialien sind wir in Würzburg schon jetzt hervorragend aufgestellt. Mit Jülich haben wir einen starken Partner, dessen Expertise die unsere sehr gut ergänzt. Gemeinsam können wir eine führende Position im topologischen Quantencomputing einnehmen.“

Wolfgang Marquardt, Vorstandsvorsitzender des Forschungszentrums Jülich, ist der Auffassung: „Die Entwicklung von so hochkomplexen Technologien, wie sie für das Quantencomputing gebraucht werden, ist nur durch die Bündelung von Expertisen und die Kooperation starker Partner erfolgreich zu meistern. Diese Kooperation ist ein wichtiger Grundstein, um die komplementären Kompetenzen der JMU und des Forschungszentrums Jülich in gemeinsamen Anstrengungen zu bündeln, mit dem Ziel, die Möglichkeiten topologischer Materialien für robuste Quantencomputer zu eruieren, und so eine Keimzelle für neue, festkörperbasierte Quanten-Innovationen zu schaffen.“

Bayern als Förderer

Das Bayerische Staatsministerium für Wirtschaft, Landesentwicklung und Energie fördert das Projekt „Bausteine für das Quantencomputing auf Basis topologischer Materialien mit experimentellen und theoretischen Ansätzen“ mit rund 13 Millionen Euro. Ministerpräsident Markus Söder hatte diese Investition Ende 2019 als Teil der Hightech Agenda Bayern angekündigt.

Vier Forschungsgruppen beteiligt

Die Fördermittel sollen in vier Forschungsgruppen fließen. Sie werden unter anderem dazu verwendet, um an den beiden Standorten vier Nachwuchsgruppen zu etablieren. Von der JMU sind die Teams der Professoren Laurens Molenkamp (Experimentalphysik) und Björn Trauzettel (Theoretische Physik) an der Kooperation beteiligt. Beide Teams wollen junge Forschende aus Jülich aufnehmen, die hier ihre eigenen Nachwuchsgruppen aufbauen können. Die Idee dahinter: „Die jungen Leute sollen als eine Art ‚menschliche Brücken‘ die Jülicher Expertisen nach Würzburg tragen und umgekehrt“, erklärt Björn Trauzettel.

In Jülich sind die Peter Grünberg Institute in der experimentellen Festkörperphysik und der theoretischen Physik involviert, die von den Professoren Detlev Grützmacher (PGI-9), Stefan Tautz (PGI-3), Stefan Blügel (PGI-1) und David DiVincenzo (PGI-2) geleitet werden. “In einer Fortführung des virtuellen Instituts für topologische Isolatoren, das von der Helmholtz-Gemeinschaft gefördert wird, sollen nun in enger wissenschaftliche Kooperation Synergien in der Erforschung topologischer Isolatoren genutzt werden, um diesen Weg für das Quantencomputing zu ebnen“, beschreibt Detlev Grützmacher die großen Hoffnungen, die in dieses Projekt gesetzt werden.

Langjährige Kooperation mit exzellentem Umfeld

Zwischen dem Forschungszentrum Jülich und der JMU bestehen seit über zehn Jahren vielfältige Kooperationen in den Bereichen Physik und Materialien der Informationstechnologie. 2012 wurde das gemeinsame Virtuelle Institut für Topologische Isolatoren (VITI) gegründet. Angesichts der vielversprechenden Entwicklungen im topologischen Quantencomputing beschlossen beide Seiten, diese Kooperation in Form von gemeinsamen Arbeitsgruppen zu festigen.

Die Forschungskooperation bewegt sich dabei in einem herausragenden Umfeld mit zwei thematisch passenden Exzellenzclustern: „Komplexität und Topologie in Quantenmaterialien ct.qmat“ (Würzburg-Dresden) sowie „Materie und Licht für Quanteninformation ML4Q“ (Köln-Aachen-Bonn-Jülich).

In Jülich ist zudem ein Helmholtz Quanten Center im Aufbau. An der JMU entsteht aktuell ein Neubau für das Institut für topologische Isolatoren (ITI). Voraussichtlich ab Mitte 2021 werden die ersten Forschungsteams nach und nach dort einziehen.

Weitere Informationen:

https://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2021/2021-05-31-qu… Gemeinsame Pressemitteilung der Julius-Maximilians-Universität Würzburg und des Forschungszentrums Jülich

Media Contact

Dipl.-Biologin Annette Stettien Unternehmenskommunikation
Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Informationstechnologie

Neuerungen und Entwicklungen auf den Gebieten der Informations- und Datenverarbeitung sowie der dafür benötigten Hardware finden Sie hier zusammengefasst.

Unter anderem erhalten Sie Informationen aus den Teilbereichen: IT-Dienstleistungen, IT-Architektur, IT-Management und Telekommunikation.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer