Es rauscht im Quantencomputer

Die vollständige Ausmessung von Quantengattern wird auch allgemein als Quantenprozess-Tomographie bezeichnet. In dieser Forschungsarbeit wird dieser unbekannte Prozess mithilfe eines speziellen Messaufbaus gemessen, der besonders robust gegenüber sogenannten „State Preparation and Measurement (SPAM)“-Fehlern ist. Bisher wurden durch einen solchen Messaufbau gewonnene Daten vor allem zur Schätzung der Genauigkeit von Quantengatter-Implementierungen verwendet (Randomized Benchmarking). Die Forscher um Jun.-Prof. Kliesch entwickelten nun eine Methode, mit welcher der unbekannte Quantenprozess aus besonders wenigen Messdaten vollständig rekonstruiert werden kann. (Bild: HHU / Martin Kliesch)

Komplexe Quantensysteme aus der Chemie, der Festkörper- oder der Hochenergiephysik sollen durch Quantencomputer simuliert werden, um ihre Eigenschaften besser erforschen zu können. Bisher existieren kleine Implementierungen mit wenigen „Qubits“, mit denen schon erste Rechenprobleme gelöst werden können.

Ein Qubit ist die kleinste Informationseinheit in einem Quantencomputer und besteht aus einem Quantensystem, das bei einer Messung zwei mögliche Ergebnisse liefern kann – also ein Bit –, aber nur auf Grundlage der Quantenmechanik vollständig beschreibbar ist. Aus je mehr Qubits sie aufgebaut werden, desto leistungsfähiger sollten die Quantencomputer werden, aber desto größeren Einfluss haben auch Fehlerquellen in Form von Rauschen.

Die Geräte funktionieren dann nicht mehr genau genug, um Rechenalgorithmen korrekt auszuführen. Die Stärke von Quantencomputern ist, dass sie sich die Gesetze der Quantenmechanik zunutze machen, so dass zum Teil Rechnungen parallelisiert werden können. Dies beruht auf dem Superpositionsprinzip, bei dem man Qubits wie Wellen überlagern und manipulieren kann. Insgesamt sind Quantencomputer noch nicht ausgereift, sondern selbst Gegenstand der Forschung.

Grundsätzlich ist das Rauschen als Fehlerquelle zwar verstanden, doch bei realen Implementierungen ist nicht klar, wie die einzelnen Komponenten und deren Fehlerbeiträge zusammenspielen. Wissenschaftler verschiedener Disziplinen versuchen deshalb, das Rauschen zu verstehen, um es kontrollieren oder dessen Einfluss minimieren zu können.

Dr. Martin Kliesch, Juniorprofessor an der HHU, erläutert die Schwierigkeit dabei: „Wir stehen vor zwei Herausforderungen: Zum einen wird selbst ein kleiner Quantencomputer mit nur einigen wenigen Qubits von einer großen Zahl von Parametern beschrieben. Und zum anderen sind unsere Werkzeuge, um die Systeme zu beschreiben, selbst fehlerbehaftet.“ Während bisherige Untersuchungen sich nur einem dieser beiden Probleme widmeten, haben Kliesch und Kollegen beide gleichzeitig angepackt.

Sie haben hierzu zwei Methoden kombiniert, das „randomisierte Benchmarking“ und die „komprimierte Erfassung“ (engl.: compressed sensing). Damit kann man Quantencomputer vermessen, so dass zum einen die Messung die Geräte selbst nur wenig beeinflusst und zum anderen die Zahl der Messungen gering genug ist, um den Messaufwand zu begrenzen.

I. Roth, R. Kueng, S. Kimmel, Y.-K. Liu, D. Gross, J. Eisert, and M. Kliesch, „Recovering quantum gates from few average gate fidelities“, Physical Review Letters 121, 170502, 24. Oktober 2018

DOI: 10.1103/PhysRevLett.121.170502

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.170502

Media Contact

Dr.rer.nat. Arne Claussen Heinrich-Heine-Universität Düsseldorf

Weitere Informationen:

http://www.hhu.de/

Alle Nachrichten aus der Kategorie: Informationstechnologie

Neuerungen und Entwicklungen auf den Gebieten der Informations- und Datenverarbeitung sowie der dafür benötigten Hardware finden Sie hier zusammengefasst.

Unter anderem erhalten Sie Informationen aus den Teilbereichen: IT-Dienstleistungen, IT-Architektur, IT-Management und Telekommunikation.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Hybride Strom-Wärme-Erzeugung

Neuartiges Parabolrinnen-Solarmodul entsteht an TU Graz. Mittels Hohlspiegel auf Photovoltaik-Zellen gebündelte Sonnenstrahlen liefern nicht nur Strom, sondern auch thermische Energie zum Heizen oder Kühlen. Drei technologische Innovationen verringern die Kosten…

Geheimnissen unserer Galaxie auf der Spur

Benachbarte Sternhaufen bewegen sich als Welle. Neue Ergebnisse deuten darauf hin, dass es keine signifikante Menge an dunkler Materie in unserer Nachbarschaft gibt. Erst vor wenigen Jahren entdeckte ein internationales…

Innovative Computertomographie

…verbessert Beurteilung der koronaren Herzkrankheit. Studie der Universitätsmedizin Mainz zeigt: Schweregrad der Erkrankung bei über 50 Prozent der Patient:innen mit Standardverfahren zu hoch eingestuft. Forschende der Universitätsmedizin Mainz haben gezeigt,…

Partner & Förderer