Durchbruch bei der optischen Informationsübertragung

Visualisierung des topologieselektiven Brillouin-Streuungseffekts in einer chiralen photonischen Kristallfaser. Lineare Pfeile stehen für die Ausbreitungsrichtung und kreisförmige Pfeile für zirkuläre Polarisationszustände oder Wirbelphasen.
(c) Xinglin Zeng und Philip Russell / Nachgedruckt mit Genehmigung von Xinglin et. al, Science Advances 8, abq6064 (2022)

Einbahnstraße für optische Wirbel.

Wissenschaftlern des Max-Planck-Instituts für die Physik des Lichts ist es erstmals gelungen, ein unidirektionales Bauelement zu schaffen, das die Qualität einer speziellen Klasse von übertragenen Signalen in der optischen Kommunikation deutlich erhöht: optische Wirbel. Durch die unidirektionale Übertragung von selektiven optischen Wirbelmoden – einer speziellen Form der Signalübertragung – reduziert das entwickelte Gerät die schädliche Rückstreuung deutlich. Die Forscher betonen den großen Nutzen ihrer Entdeckung in optischen Systemen, so reicht die Anwendung des Bauelements von der Modenmultiplex-Kommunikation, optischen Pinzetten, Vortex-Lasern bis hin zu Quantenmanipulationssystemen.

Die optische Kommunikation kann verbessert werden, indem die Menge der übertragenen optischen Informationen erhöht wird. Dies kann durch die Verwendung von Multiplex-Kanälen erreicht werden, zum Beispiel mit mehreren optischen Wellenlängen, verschiedenen Polarisationszuständen oder mehreren Zeitfenstern. So wurden in den letzten zehn Jahren die optischen Raummoden, die Eigenfelder in den Wellenleitern, in großem Umfang genutzt: Sie verbessern die Kommunikationskapazität aufgrund der geringen Überlagerung zwischen orthogonalen Raummoden.

Sowohl in der klassischen Kommunikation als auch in der Quantenkommunikation hat sich der Einsatz von Vortex-Moden in Multiplexing-Verfahren als vorteilhaft erwiesen. Dieser spezielle Modensatz besitzt eine schraubenförmige optische Phasenverteilung und ermöglicht einen zusätzlichen Freiheitsgrad beim Multiplexen optischer Signale. Geräte wie Vortex-Generatoren, Laser und Signalverstärker wurden entwickelt und sind seitdem sehr gefragt.

Limitierender Effekt bei der Nutzung ist, dass es bisher kein Gerät gibt, das die Übertragung bestimmter Wirbelmoden in einer Richtung, aber nicht in der Gegenrichtung erlaubt. Gerade ein solches Gerät – ein so genannter optischer Wirbelisolator – ist jedoch von entscheidender Bedeutung für die Verbesserung der Signalqualität und -reinheit. Die besondere Schwierigkeit bei der Entwicklung einer solchen Vorrichtung ist ein grundlegendes Prinzip der Optik: die Reziprozität. Es erfordert eine symmetrische Antwort eines Übertragungskanals, wenn die Quell- und Beobachtungspunkte vertauscht werden.

Forschern gelingt der Bau eines optischen Wirbelisolators

Wissenschaftlern des Max-Planck-Instituts für die Physik des Lichts ist nun mit der Entwicklung eines unidirektionalen Bauelements der Durchbruch gelungen: Das Team unter der Leitung von Xinglin Zeng, Philip Russell und Birgit Stiller nutzt Schallwellen, die sich in nur eine Richtung ausbreiten, um die Reziprozität der Lichtübertragung für ausgewählte Wirbelmoden zu brechen.

Der Effekt der so genannten topologieselektiven Brillouin-Mandelstam-Streuung in chiralen photonischen Kristallfasern ermöglicht eine unidirektionale Wechselwirkung von wirbeltragenden Lichtwellen mit wandernden Schallwellen. Ein bestimmter optischer Wirbel kann mit einem gut konzipierten Kontrolllicht stark unterdrückt oder verstärkt werden. Die experimentellen Ergebnisse, publiziert in Science Advances, zeigen eine signifikante Wirbelisolationsrate, die es erlaubt, zufällige Rückstreuung und Signalverschlechterung im System zu verhindern.

„Dies ist das erste nicht-reziproke System für Wirbelmoden, das eine neue Perspektive in der nicht-reziproken Optik eröffnet – der gleiche physikalische Effekt kann nicht nur bei den Grundmoden, sondern auch bei Moden höherer Ordnung auftreten“, sagt Xinglin Zeng, der Erstautor dieser Arbeit. „Der lichtgetriebene optische Wirbelisolator wird große Auswirkungen auf Anwendungen wie optische Kommunikation, Quanteninformationsverarbeitung, optische Pinzetten und Faserlaser haben. Ich finde die Möglichkeit der selektiven Manipulation von Wirbelmoden allein durch Licht- und Schallwellen ein sehr faszinierendes Konzept“, betont Birgit Stiller, die Leiterin der Forschungsgruppe Quantenoptoakustik.

Wissenschaftliche Ansprechpartner:

Birgit Stiller, birgit.stiller@mpl.mpg.de
Xinglin Zeng, xinglin.zeng@mpl.mpg.de

Originalpublikation:

Xinglin Zeng, Philip St.J. Russell, Christian Wolff, Michael H. Frosz, Gordon K. L. Wong and Birgit Stiller, “Nonreciprocal vortex isolator via topology-selective stimulated Brillouin scattering”, Science Advances 8 (2022),
https://www.science.org/doi/10.1126/sciadv.abq6064

http://www.mpl.mpg.de

Media Contact

Florian Ritter Kommunikation und Marketing
Max-Planck-Institut für die Physik des Lichts

Alle Nachrichten aus der Kategorie: Informationstechnologie

Neuerungen und Entwicklungen auf den Gebieten der Informations- und Datenverarbeitung sowie der dafür benötigten Hardware finden Sie hier zusammengefasst.

Unter anderem erhalten Sie Informationen aus den Teilbereichen: IT-Dienstleistungen, IT-Architektur, IT-Management und Telekommunikation.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer