Riesenfortschritt bei magnetischen Speichermedien in Sicht

Forschern der Universität Hamburg und des Forschungszentrums Jülich ist ein entscheidender Durchbruch bei der Analyse magnetischer Strukturen auf atomarer Skala gelungen. Wie in dem angesehenen amerikanischen Wissenschaftsmagazin „Science“ (Ausgabe vom 9. Juni 2000) berichtet, konnte im Rahmen einer Zusammenarbeit der experimentellen Arbeitsgruppe von Prof. Dr. Roland Wiesendanger vom Zentrum für Mikrostrukturforschung der Universität Hamburg und der Theorie-Arbeitsgruppe von Dr. Stefan Blügel vom Forschungszentrum Jülich erstmals eine einzelne Atomlage eines speziellen mangetischen Materials, bei dem jeweils die einzelnen atomaren Elementarmagnete auf benachbarten Plätzen entgegengesetzt ausgerichtet sind, mit Hilfe eines neuen magnetisch sensitiven und atomar auflösenden Mikroskopieverfahrens direkt abgebildet werden. Damit können nun erstmals neben einzelnen Atomen und einzelnen Elektronenladungen auch die magnetischen Eigenschaften in atomaren Dimensionen sichtbar gemacht werden.

Obgleich dies zunächst einen fundamentalen Beitrag im Bereich der Grundlagenforschung darstellt, zeichnen sich bereits heute enorme Anwendungsziele ab, wenn es gelingt, die magnetischen Strukturen auch auf dieser atomaren Skala gezielt zu verändern. Dann könnte eine vollkommen neue Generation magnetischer Speichermedien verfügbar werden, welche die Kapazität heutiger Speichermedien millionenfach übertrifft.
Grundlage des neuen magnetisch-sensitiven Abbildungsverfahrens stellt das Rastertunnelmikroskop dar, das 1982 von Prof. Gerd Binnig und Dr. Heinrich Rohrer (Nobelpreis für Physik 1986) am IBM Forschungslaboratorium in Zürich entwickelt wurde. Dieses nutzt das Tunneln von Elektronen zwischen einer atomar scharfen Metallspitze und einer leitfähigen Probe bei Abständen im Bereich von millionstel Millimetern, um atomare Landschaften und Elektronenverteilungen in Metallen und Halbleitern direkt zu visualisieren. Dabei werden keine Linsensysteme benötigt wie bei herkömmlichen Mikroskopen. Auch die Energie der Elektronen kann im Vergleich zur herkömmlichen Elektronenmikroskopie und zur Röntgenmikroskopie millionenfach kleiner gewählt werden und schädigt somit nicht das zu untersuchende Material.

Bereits vor zehn Jahren konnte Prof. Roland Wiesendanger – damals noch an der Universität Basel tätig – die Sensitivität dieses Mikroskopieverfahrens auf den sogenannten „Spin“ (Eigendrehimpuls) der Elektronen erstmals nachweisen und auf das älteste bekannte magnetische Material (Magnetit) anwenden („Science“ 1992). Die neuen experimentellen Resultate in Hamburg bedeuten jedoch nochmals einen erheblichen Fortschritt bezüglich der Ortsauflösung und Sensitivität. Derzeit gibt es kein konkurrierendes magnetisch-sensitives Abbildungsverfahren, das eine vergleichbare Leistungsfähigkeit aufweist. Entsprechend groß ist das Interesse zahlreicher Firmen, die auf dem Gebiet der Magnetspeichertechnologie sowie der magnetischen Sensorik arbeiten.

Ziel für die Zukunft ist jedoch nicht nur die Nutzung der analytischen Möglichkeiten der neu entwickelten Technik, sondern insbesondere die Konzeption einer vollkommen neuen Generation magnetischer Datenspeicher, bei denen die einzelnen Informationseinheiten (Bits) millionenfach kleiner sind. Um dies zu erreichen, müssen die magnetischen Zustände auf atomarer Skala direkt ausgelesen werden können, was zur Zeit nur in Hamburg beherrscht wird. In enger Kooperation mit der Industrie soll nun dieses neue Speicherkonzept weiter verfolgt werden.
Die Forschungsarbeiten an der Universität Hamburg auf diesem Gebiet werden vom Bundesministerium für Bildung und Forschung (Förderprogramm Nanotechnologie), der Deutschen Forschungsgemeinschaft sowie der Deutsch-Israelischen Wissenschafts-Stiftung finanziert.

Kontakt:
Prof. Dr. Roland Wiesendanger (wiesendanger@physnet.uni-hamburg.de)

Ansprechpartner für Medien

Klaus TornierA

Alle Nachrichten aus der Kategorie: Informationstechnologie

Neuerungen und Entwicklungen auf den Gebieten der Informations- und Datenverarbeitung sowie der dafür benötigten Hardware finden Sie hier zusammengefasst.

Unter anderem erhalten Sie Informationen aus den Teilbereichen: IT-Dienstleistungen, IT-Architektur, IT-Management und Telekommunikation.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Materialforschung mit Ultra-Kurzpuls-Laserquelle

Universität Bayreuth verfügt über leistungsstarkes Großgerät. Die Ingenieurwissenschaften an der Universität Bayreuth verfügen seit kurzem über ein einzigartiges, mit einer Ultra-Kurzpuls-Laserquelle ausgestattetes Lasergerät zur Bearbeitung von Materialien. Auf den Gebieten…

Offene IT-Plattform xito.one: Low Code für Serviceroboter

Begleitendes Forschungsprojekt SeRoNet zeigt Flagge auf automatica sprint. Coronabedingt letztes Jahr abgesagt, findet vom 22. bis 24. Juni 2021 die digitale Fachmesse automatica sprint statt. Das Fraunhofer IPA präsentiert dort…

Evolution: Auf verschiedenen Wegen zum Ziel

Fruchtfliegen haben im Lauf der Evolution unterschiedliche Lösungen gefunden, um die ungleiche Verteilung von Geschlechtschromosomen zu kompensieren. Die Geschlechtschromosomen sind im Tierreich oft ungleich verteilt: Weibliche Zellen verfügen über zwei…

Partner & Förderer