Tsunamigefahr durch Inselvulkane – Kieler Meeresforscher untersuchen Vulkankomplex im Westpazifik

Ritter Island vor und nach dem Kollaps im Jahre 1888: Die Pfeile auf dem Photo aus 2004 zeigen die Umrisse an, die der Zeichnung aus 1835 zugeordnet werden können. Jacobs, 1844

Flankenzusammenbrüche von Vulkaninseln generieren hochenergetische Erdrutsche, die große Tsunamis verursachen können. Computersimulationen zeigen, dass sehr große vulkanische Erdrutsche sogar zu ozeanweiten Flutwellen führen können.

Die Magnitude solcher Tsunamis ist jedoch umstritten, da sie von vielen Faktoren abhängt, insbesondere von den submarinen Transport- und Ablagerungsprozessen. Für eine vollständige Analyse des Gefahrenpotentials, das von Flankenkollapsen ausgeht, ist es daher wichtig, diese Faktoren im Detail zu untersuchen.

Wissenschaftlerinnen und Wissenschaftler unter Leitung von Prof. Dr. Christian Berndt vom GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel werden in den kommenden vier Wochen mit dem deutschen Forschungsschiff SONNE die Westflanke von Ritter Island in der Bismarcksee im Westpazifik genauer untersuchen. „1888 sind beim Kollaps der Westflanke der Insel etwa fünf Kubikkilometern Material bewegt worden“, erläutert der Geophysiker Christian Berndt. „Damit ist die Rutschung der größte historisch belegte Flankenkollaps eines Vulkans“, so Berndt weiter.

Nach Ansicht der Forscher bietet das Arbeitsgebiet aus mehreren Gründen ideale Bedingungen zur Rekonstruktion der submarinen Transport- und Ablagerungsprozesse. Zum einen hat der Zusammenbruch in jüngster geologischer Vergangenheit stattgefunden und somit sind die Ablagerungen im marinen Bereich sehr deutlich erkennbar.

Ferner sind historische Aufzeichnungen wie Augenzeugenberichte von dem Ereignis vorhanden. Diese enthalten unter anderem die Höhen und Ankunftszeiten des ausgelösten Tsunamis, wie sie von deutschen Siedlern auf mehreren Nachbarinseln gemessen und dokumentiert wurden.

„Wir werden eine ganze Reihe verschiedener geologischer, geophysikalischer und biologischer Untersuchungsverfahren anwenden, um mehr über das Ereignis zu erfahren“, erläutert Christian Berndt. Nach einer detaillierten Kartierung mit Fächerecholot und Parasound, kommen seismische Verfahren zum Einsatz. Mit dem P-Cable System des GEOMAR soll dann ein dreidimensionales Bild des Untergrundes erstellt werden, um die Dynamik des vulkanischen Erdrutsches zu analysieren.

Ferner werden auch Sedimentproben aus der Rutschungsablagerung genommen, um ihre Zusammensetzung und Herkunft sowie die zeitliche Entwicklung zu ermitteln. Der Tiefseeroboter HyBIS vom GEOMAR wird dann verwendet,, um Proben von großen Rutschungsblöcken zu nehmen und die Meeresbodenstrukturen durch Videoaufnahmen zu kartieren.

„Mit Hilfe der gewonnen Daten wird es im Nachgang möglich sein, den Tsunami und die Rutschung numerisch zu simulieren, um so die unbekannten Parameter wie Beschleunigung und Geschwindigkeit des abrutschenden Materials zu berechnen, die dann in Gefährdungsanalysen für andere Vulkane benutzt werden können“, so Christian Berndt.

Expedition auf einen Blick:
SONNE-Expedition SO252
Forschungsthema: Flankenzusammenbrüche an Vulkaninseln
Wissenschaftlicher Fahrtleiter: Prof. Dr. Christian Berndt (GEOMAR)
Start: 05. November 2016, Yokohama (Japan)
Ende: 18. Dezember 2016, Nouméa (Neukaledonien)

Media Contact

Dr. Andreas Villwock idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.geomar.de/

Alle Nachrichten aus der Kategorie: Geowissenschaften

Die Geowissenschaften befassen sich grundlegend mit der Erde und spielen eine tragende Rolle für die Energieversorgung wie die allg. Rohstoffversorgung.

Zu den Geowissenschaften gesellen sich Fächer wie Geologie, Geographie, Geoinformatik, Paläontologie, Mineralogie, Petrographie, Kristallographie, Geophysik, Geodäsie, Glaziologie, Kartographie, Photogrammetrie, Meteorologie und Seismologie, Frühwarnsysteme, Erdbebenforschung und Polarforschung.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Funktionsweise von Adrenalin-bindendem Rezeptor entschlüsselt

Leipziger Biophysiker verfolgen Mechanismus der Signalübertragung im Körper nach. G-Protein-gekoppelte Rezeptoren (GPCR) sind im menschlichen Körper allgegenwärtig und an vielen komplexen Signalwegen beteiligt. Trotz ihrer Bedeutung für zahlreiche biologische Vorgänge…

Eine Alternative für die Manipulation von Quantenzuständen

Forschende der ETH Zürich haben gezeigt, dass man die Quantenzustände einzelner Elektronenspins durch Elektronenströme mit gleichmässig ausgerichteten Spins kontrollieren kann. Diese Methode könnte in Zukunft in elektronischen Schaltelementen eingesetzt werden….

Neue Einblicke in das Entstehen kleinster Wolkenpartikel in der Arktis

Ny-Ålesund (Spitzbergen). Mobile Messgeräte ermöglichen die Untersuchung von atmosphärischen Prozessen in höheren Luftschichten, die von klassischen Messstationen am Boden bisher nicht erfasst werden. Die luftgetragenen Flugsysteme leisten somit einen wichtigen…

Partner & Förderer