Neuartige Multireflexionszelle liefert präzisere Erkenntnisse zur Erdatmosphäre

Die neuartige Multireflexionszelle: Eine Entwicklung der Forschungsstelle für<br>Atmosphärische Chemie der Universität Bayreuth<br>

Mit diesen Fragen befasst sich an der Universität Bayreuth die Forschungsstelle für Atmosphärische Chemie. Im Mittelpunkt des Interesses stehen dabei Aerosole, d.h. feste oder flüssige Partikel, die sich in der Luft verteilen und nur einen Durchmesser von rund 100 Nanometern haben.

Solche Gemische aus Luft und winzigen Partikeln entstehen täglich in der Troposphäre, der untersten Schicht der Erdatmosphäre. In der Bayreuther Forschungsstelle können sie mithilfe von Aerosolkammern künstlich erzeugt werden. Die in diesen Gemischen ablaufenden chemischen Reaktionen und die daraus resultierenden Stoffe lassen sich hier mit hoher Genauigkeit bestimmen. So wird es möglich, die komplexen Vorgänge in der Atmosphäre besser zu verstehen.

Eine besondere Herausforderung für derartige Untersuchungen ist die Tatsache, dass die winzigen Aerosol-Partikel oft nur in einer sehr geringen Konzentration in der Luft verbreitet sind. Dies gilt auch für die künstlich erzeugten Gemische, die den realen Verhältnissen in der Troposphäre möglichst nahekommen sollen. Deshalb werden spezielle Verfahren der Infrarot-Spektroskopie eingesetzt, die in der Lage sind, die Partikel aufzuspüren und chemisch zu identifizieren. Wenn ein Lichtstrahl ein Aerosol-Luftgemisch durchläuft, liefert die Weise, wie er dabei absorbiert wird, wichtige Hinweise auf die Zusammensetzung des Gemisches und die darin ablaufenden Reaktionen. Diese Informationen können umso präziser sein, je länger die Strecke ist, die der Lichtstrahl zurücklegt. Mit einer neuen technischen Entwicklung ist es einem Forschungsteam um Dipl.-Ing. Johannes Ofner und Heinz-Ulrich Krüger nun gelungen, auf einfache Weise eine Weglänge des Lichtstrahls zu erzeugen, die sich mit bisherigen Messapparaturen so nicht erreichen ließ. Es handelt sich um eine neuartige kreisförmige Multireflexionszelle, die den Lichtstrahl in ihrem Zentrum bündelt und hier eine hohe Lichtintensität bewirkt. Von ihren Bayreuther Erfindern ist sie kürzlich in der Zeitschrift „Applied Optics“ vorgestellt worden.

Das Zentrum der Zelle ist ein Innenraum, der von einem kreisrunden Ring aus Aluminium eingefasst ist. Um optimale Bedingungen für die Lichtreflexion zu herzustellen, ist die innere Oberfläche des Ringes optisch poliert und gewölbt; die Wölbung entspricht dabei exakt einer Kugeloberfläche. In dem Ring befinden sich zwei winzige Löcher, durch den der Lichtstrahl ein- und austreten kann. Das optische System außerhalb der Zelle macht es möglich, die Richtung des Strahles und die Weglänge exakt zu justieren. Die Pointe der gesamten Konstruktion besteht darin, dass der Lichtstrahl infolge zielgenau gesteuerter Reflexionen den Hohlraum mehrfach durchläuft. Die dabei zurückgelegte Wegstrecke ist weitaus einfacher herzustellen als mit bisherigen, mehr Raum beanspruchenden Multireflexionszellen. Und sie lässt sich, was ein weiterer Vorteil ist, von außen wesentlich einfacher justieren – eben dadurch, dass die Reflexionspunkte sowie die Eintritts- und Reflexionswinkel exakt festgelegt werden.

Die neuartige Multireflexionszelle ist Teil einer Versuchsanordnung, in der ein Aerosolströmungsreaktor mit einem Infrarotspektrometer verkoppelt wird. „In unserer Forschungsstelle können wir jetzt ohne höheren technischen oder finanziellen Aufwand die Aerosolbildung in der Atmosphäre mit einer sehr hohen Präzision untersuchen. So gewinnen wir neue Erkenntnisse über die Auswirkungen von Industrieabgasen, aber auch von natürlichen Emissionen,“ erklärt Ofner. Und der Leiter der Forschungsstelle für Atmosphärische Chemie, Professor Cornelius Zetzsch, ergänzt: „Bereits seit 2004 nehmen wir an dem von der Europäischen Union geförderten Forschungsprojekt EUROCHAMP teil. Darin kooperieren 14 Hochschulen und Forschungsinstitute, die über Simulationskammern zur Untersuchung atmosphärischer Prozesse verfügen. Mit unserer hochleistungsfähigen Infrastruktur unterstützen wir diesen europäischen Verbund. Die neue Multireflexionszelle beweist, dass intelligente technische Innovationen – auch wenn sie scheinbar klein und unspektakulär sind – die Forschung erheblich voranbringen können.“

Veröffentlichung:
Johannes Ofner, Heinz-Ulrich Krüger, and Cornelius Zetzsch,
Circular multireflection cell for optical spectroscopy,
In: Applied Optics, Vol. 49, No. 26, pp. 5001 – 5004, DOI: 10.1364/AO.49.005001
Kontaktadresse für weitere Informationen:
Dipl.-Ing. Johannes Ofner
Forschungstelle für Atmosphärische Chemie der Universität Bayreuth
Dr.-Hans-Frisch-Str. 1-3, D-95448 Bayreuth
Tel.: +49 (0)921 55-5772 / E-Mail: johannes.ofner@uni-bayreuth.de
Dipl.-Ing. Johannes Ofner (li.) und Prof. Dr. Cornelius Zetzsch
in der Forschungsstelle für Atmosphärische Chemie

Media Contact

Christian Wißler Universität Bayreuth

Alle Nachrichten aus der Kategorie: Geowissenschaften

Die Geowissenschaften befassen sich grundlegend mit der Erde und spielen eine tragende Rolle für die Energieversorgung wie die allg. Rohstoffversorgung.

Zu den Geowissenschaften gesellen sich Fächer wie Geologie, Geographie, Geoinformatik, Paläontologie, Mineralogie, Petrographie, Kristallographie, Geophysik, Geodäsie, Glaziologie, Kartographie, Photogrammetrie, Meteorologie und Seismologie, Frühwarnsysteme, Erdbebenforschung und Polarforschung.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer