Krater unterm Stethoskop

Wie hat der Einschlag des Mini-Meteoriten den Sandstein im Innern geschädigt? Die Ultraschall-Analyse wird es zeigen. (Bild: TUM / MEMIN)<br>

Ein Meteoriteneinschlag hinterlässt nicht nur auf der Erdoberfläche sichtbare Spuren. Auch unterirdisch entstehen Risse und Spalten, abhängig von Größe, Energie und Einschlagswinkel des Himmelskörpers.

Das Ausmaß dieser Schädigungszone können geophysikalische Messverfahren bislang nur ungenau erfassen. Wissenschaftler der Technischen Universität München (TUM) arbeiten deshalb daran, die Bildung von Kratern besser zu verstehen: Sie haben dafür Miniatur-Meteorite unter Laborbedingungen einschlagen lassen – und unterziehen die Krater einer Ultraschallanalyse.

Bis zu 30.000 Kilometer pro Stunde schnell sind die Metallkugeln, die die Forscher auf einen Sandsteinblock schießen. Im Labor des Fraunhofer-Instituts für Kurzzeitdynamik in Freiburg simulieren die Miniatur-Meteorite die Zerstörungskraft von echten Einschlägen: Ein Zentimeter große Projektile hinterlassen einen sechs Zentimeter breiten und einen Zentimeter tiefen Sandsteinkrater. Dabei fällt die tatsächliche Schädigung im Inneren des Gesteins weitaus größer aus, als mit bloßem Auge oder im Mikroskop erkennbar ist – das haben Wissenschaftler der Technischen Universität München (TUM) mithilfe von Ultraschalltomographie ermittelt. Bis zu achtmal breiter als der eigentliche Krater ist die Zone, in der unterirdisch Risse und Spalten verlaufen.

Kosmische Kräfte im Labor

„Bei natürlichen Kratern können wir oft nur Vermutungen darüber anstellen, welche Schäden von dem Meteoriteneinschlag selbst stammen und welche Risse nachträglich durch die Verwitterung des Gesteins entstanden sind“, sagt Prof. Christian Große vom TUM-Lehrstuhl für Zerstörungsfreie Prüfung. Mit den Ultraschallmessungen können die Wissenschaftler nun systematisch erheben, wie sich Größe, Energie und Einschlagswinkel eines Meteoriten auf die Beschaffenheit der unterirdischen Schädigung auswirken. „Bei einem senkrechten Aufprall können wir beispielsweise eine halbkugelförmige Schädigungszone erfassen. Trifft der Meteorit schräg auf, kann das anders aussehen“, sagt Große.

Er arbeitet gemeinsam mit Geowissenschaftlern, Physikern und Ingenieuren daran, die Bildung von Meteoritenkratern besser zu verstehen. „Die Kollision von Himmelskörpern gehört zu den wichtigsten Prozessen bei der Entstehung unserer Galaxie. Mit den Kraterexperimenten können wir auch ihre Wirkung auf die Erde besser abschätzen.“

Signale aus dem Inneren des Gesteins

Mithilfe des Ultraschall-Tomographen lassen sich Grad und Ausbreitung der verborgenen Risse im Gestein erfassen, ohne die wertvollen experimentellen Krater zu beschädigen. Dazu wird ein akustisches Signal in einer bestimmten Frequenz durch den Sandsteinblock geschickt. Weil sich die Schallwellen im Gestein mit 3.000 Metern pro Sekunde etwa zehnmal schneller ausbreiten als in der Luft, verursachen Risse und Spalten Signale mit größerer Amplitude. Auf der Basis dieser Signale erstellen die Wissenschaftler Geschwindigkeitsfelder, die sichtbar machen, wo die Schallwellen von Rissen aufgehalten werden. „Im nächsten Schritt verändern wir gezielt die Schussenergie und den Einschlagswinkel der Miniatur-Meteorite – und damit auch den unterirdischen Teil der Krater“, erklärt Große.

Über das Projekt:
Die von der Deutschen Forschungsgemeinschaft (DFG) finanzierte Forschergruppe MEMIN (Multidisciplinary Experimental and Modeling Impact Crater Research Network) verfolgt das Ziel, die Prozesse bei Hochgeschwindigkeitseinschlägen und die Bildung von Meteoritenkratern mit experimentellen und numerischen Verfahren zu analysieren.

MEMIN ist eine ortsübergreifende Forschergruppe, an der neben dem Museum für Naturkunde Berlin das Fraunhofer Institut für Kurzzeitdynamik Freiburg, die Universität Freiburg, das Geoforschungszentrum Potsdam, die Technische Universität München, die Universität Münster und die University of California in Berkeley beteiligt sind. Das Projekt ist 2009 gestartet und konnte in diesem Jahr eine zweite Förderphase über drei Jahre erreichen.

Mehr Informationen:
http://www.memin.de
Videos und hochaufgelöste Bilder zum Download:
http://mediatum.ub.tum.de/?id=1185589#1185589
Publikation:
D. Moser, M. H. Poelchau, F. Stark, C. Große: Application of nondestructive testing methods to study the damage zone underneath impact craters of MEMIN laboratory experiments, Meteoritics & Planetary Science, 2013, doi: 10.1111/maps.12000

http://onlinelibrary.wiley.com/doi/10.1111/maps.12000/abstract

Kontakt:
Prof. Dr. Christian Große
Technische Universität München
Lehrstuhl für Zerstörungsfreie Prüfung
Tel: +49 89 289 27220
grosse@cbm.bv.tum.de
http://www.cbm.bv.tum.de

Die Technische Universität München (TUM) ist mit rund 500 Professorinnen und Professoren, 10.000 Mitarbeiterinnen und Mitarbeitern und 35.000 Studierenden eine der forschungsstärksten Technischen Universitäten Europas. Ihre Schwerpunkte sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften und Medizin, ergänzt um Wirtschafts- und Bildungswissenschaft. Die TUM handelt als unternehmerische Universität, die Talente fördert und Mehrwert für die Gesellschaft schafft. Dabei profitiert sie von starken Partnern in Wissenschaft und Wirtschaft. Weltweit ist sie mit einem Campus in Singapur sowie Niederlassungen in Brüssel, Kairo, Mumbai, Peking und São Paulo vertreten. An der TUM haben Nobelpreisträger und Erfinder wie Rudolf Diesel und Carl von Linde geforscht. 2006 und 2012 wurde sie als Exzellenzuniversität ausgezeichnet. In internationalen Rankings gehört sie regelmäßig zu den besten Universitäten Deutschlands.

Media Contact

Prof. Dr. Christian Große Technische Universität München

Alle Nachrichten aus der Kategorie: Geowissenschaften

Die Geowissenschaften befassen sich grundlegend mit der Erde und spielen eine tragende Rolle für die Energieversorgung wie die allg. Rohstoffversorgung.

Zu den Geowissenschaften gesellen sich Fächer wie Geologie, Geographie, Geoinformatik, Paläontologie, Mineralogie, Petrographie, Kristallographie, Geophysik, Geodäsie, Glaziologie, Kartographie, Photogrammetrie, Meteorologie und Seismologie, Frühwarnsysteme, Erdbebenforschung und Polarforschung.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Die Gewebe-Spalter

Mit dem TissueGrinder – einer automatisierten Miniatur-Mühle für empfindliches Zellgewebe – lassen sich lebende Zellen aus einer Gewebeprobe herauslösen. Die Technik wurde am Fraunhofer IPA entwickelt. Eine Ausgründung bringt jetzt…

Energie System 2050: Lösungen für die Energiewende

Als Beitrag zum globalen Klimaschutz muss Deutschland den Einsatz fossiler Energieträger rasch und umfassend minimieren und das Energiesystem entsprechend umbauen. Wie und mit welchen Mitteln das am besten gelingen kann,…

Forscher*innen entdecken neue Maiskrankheit

Der Schutz der Kulturpflanzen vor Schädlingen und Krankheiten ist eine essenzielle Voraussetzung für die sichere Versorgung mit Lebensmitteln. Etwa 95 Prozent der Lebensmittel stammen aus konventioneller Landwirtschaft, die zur Gesunderhaltung…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close