Die Kollision der Kontinente

Am 27. Februar 2010 frühmorgens bebte die Erde. Die gewaltige Naturkatastrophe zerstörte zahlreiche Küstenorte und große Teile von Concepción, der zweitgrößten Stadt Chiles. Auch die Hauptstadt Santiago erlitt erhebliche Schäden. Hunderte Menschen fanden den Tod, etwa zwei Millionen weitere waren direkt betroffen von Verletzungen, Überschwemmungen, Obdachlosigkeit.

Es war das fünftstärkste Beben, das seit Beginn der instrumentellen Aufzeichnungen Anfang des vergangenen Jahrhunderts weltweit gemessen wurde. Fünf Tage zuvor verteidigte der chilenische DAAD-Doktorand Marcos Moreno an der TU Berlin seine Dissertation, in der er das nächste große Erdbeben nördlich seiner Heimatstadt Concepción bereits prophezeite.

„In der Tat kam das Erdbeben nicht unerwartet. Die stärksten Beben ereignen sich stets an den Rändern kontinentaler tektonischer Platten, unter denen eine schwerere ozeanische Platte abtaucht“, erklärt Privatdozent Dr. Jürgen Klotz vom GeoForschungsZentrum Potsdam, der die Dissertation zusammen mit Prof. Dr. Gerhard Franz vom Institut für Angewandte Geowissenschaften der TU Berlin betreute. „Die Westküste Südamerikas ist ein Musterbeispiel für diese Ozean-Kontinent-Kollision.“ Hier taucht die ozeanische Nazca-Platte mit einer Geschwindigkeit von 6,5 Zentimetern pro Jahr unter Südamerika ab. Wenn die abtauchende Platte mit der vordersten Front des Kontinents verbunden ist, wird dieser elastisch zusammengedrückt. Irgendwann baut sich die so aufgestaute Deformation ruckartig in einem Erdbeben ab.

„Diese ‚interseismisch‘ genannte Deformation kann heute mit hochgenauen geodätischen Verfahren, zum Beispiel mit dem ,Global Positioning System‘ (GPS), direkt gemessen werden“, so Klotz.

An der TU Berlin wurde bereits im Jahre 1987 ein Projekt zur Messung dieser Deformation in Chile initiiert. „Nach der Wende“, so erklärt Professor Gerhard Franz, „wurde dieses Projekt im Rahmen der Kooperation der Institute für Angewandte Geowissenschaften sowie Geodäsie und Geoinformationstechnik mit dem GeoForschungsZentrum Potsdam weitergeführt.“ „Es stellte sich bald heraus, dass die tektonischen Platten im jetzt gebrochenen Segment vollständig gekoppelt sind – eine große Gefahr!“

Das letzte Megabeben in Chile fand am 20. Februar 1835 statt. „Es ist gut dokumentiert, denn der berühmte Naturforscher Charles Darwin hat es miterlebt“, erzählt Jürgen Klotz. „In diesen 175 Jahren hat sich an Chiles Küste eine erhebliche Spannung aufgebaut. Leider gehört zu den großen Unsicherheiten bei der Bebenvorhersage, dass wir nicht oder nur schwer abschätzen können, wie sich das Spannungsfeld in diesem langen Zeitraum tatsächlich verhält.“ Genau das hat der Diplomgeologe Marcos Moreno untersucht, nämlich wie diese Deformation in den südlichen Anden abgebaut wird. Er kam zu dem Ergebnis, dass der tektonische Aufbau der kontinentalen Kruste in den Anden ein dauerhaftes Merkmal dieses Kontinentalrandes ist und die Struktur der ozeanischen Platte und ihrer Bruchzonen nur eine untergeordnete Rolle spielt. Modellhaft konnte er auch zeigen, dass die genaue Geometrie der seismogenen Zone, entlang der das Gestein während eines Bebens bricht, großen Einfluss auf die messbare Oberflächendeformation hat. Seine Dissertation bestimmte den Grad und die Ausdehnung der Plattenkopplung entlang dieser seismogenen Zone genauer und zuverlässiger als bisher. So folgerte Marcos Moreno, dass die Wahrscheinlichkeit für ein Erdbeben im jetzt tatsächlich gebrochenen Segment am höchsten war.

„Tragischerweise konnte auch Marcos Moreno den Zeitpunkt des Bebens nicht exakt vorhersagen. Nach dem heutigen Stand der Wissenschaft ist das nicht möglich“, so Jürgen Klotz. Das Zusammenspiel der beteiligten Prozesse sei einfach zu komplex. Es könnten nur Wahrscheinlichkeiten angegeben werden, wann und wo Erdbeben einer bestimmten Größe auftreten könnten. Doch man ist zuversichtlich: „Das Beben vom 27. Februar wird uns auf jeden Fall eine Fülle neuer Informationen zum Verständnis des Erdbebenprozesses liefern.“

Geo.X bündelt das Wissen in Berlin-Brandenburg

Geowissenschaftliche Themen, die für die Zukunft der Gesellschaft von erheblicher Bedeutung sind, sollen künftig disziplinübergreifend erforscht werden. Dafür haben Anfang März die drei großen Berliner Universitäten, das Museum für Naturkunde, die Universität Potsdam, das Helmholtz Zentrum Potsdam – Deutsches GeoForschungsZentrum GFZ die Koordinierungsplattform „GeoX“ gegründet. Der Name „GeoX“ steht für den Brückenschlag von den Geowissenschaften zu weiteren Natur- und Ingenieurwissenschaften, aber auch zu geistes- und gesellschaftswissenschaftlichen Fachdisziplinen. Unter dieser „Marke“ soll die Fachkompetenz der Region Berlin-Brandenburg in diesem Feld gebündelt werden. In den beteiligten Einrichtungen beschäftigen sich mehr als 1600 Menschen mit Geothemen, an den Universitäten studieren derzeit rund 3000 angehende Geowissenschaftlerinnen und -wissenschaftler. Weitere Informtionen zu „GeoX“ finden Sie unter: www.geo-x.net

Weitere Informationen erteilt Ihnen gern: Prof. Dr. Gerhard Franz, Technische Universität Berlin, Fakultät VI Planen Bauen Umwelt, Fachgebiet Petrologie, Tel.: 030 / 314–72217, E-Mail: gerhard.franz@tu-berlin.de

Media Contact

Stefanie Terp idw

Alle Nachrichten aus der Kategorie: Geowissenschaften

Die Geowissenschaften befassen sich grundlegend mit der Erde und spielen eine tragende Rolle für die Energieversorgung wie die allg. Rohstoffversorgung.

Zu den Geowissenschaften gesellen sich Fächer wie Geologie, Geographie, Geoinformatik, Paläontologie, Mineralogie, Petrographie, Kristallographie, Geophysik, Geodäsie, Glaziologie, Kartographie, Photogrammetrie, Meteorologie und Seismologie, Frühwarnsysteme, Erdbebenforschung und Polarforschung.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Ordnung in der Unordnung

Dichtefluktuationen in amorphem Silizium entdeckt Erstmals hat ein Team am HZB mit Röntgen- und Neutronenstreuung an BESSY II und BER II in amorphem Silizium mit einer Auflösung von 0.8 Nanometern…

Das Protein-Kleid einer Nervenzelle

Wo in einer Nervenzelle befindet sich ein bestimmter Rezeptor? Ohne Antwort auf diese Frage ist es fast unmöglich, Rückschlüsse über die Funktion dieses Proteins zu ziehen. Zwei Wissenschaftlerinnen am Max-Planck-Institut…

40 Jahre alter Katalysator birgt Überraschungen für die Wissenschaft

Wirkmechanismus des industriellen Katalysators Titansilikalit-1 basiert auf Titan-Paaren/Entdeckung wegweisend für die Katalysatorentwicklung Der Katalysator “Titansilikalit-1“ (TS-1) ist nicht neu: Schon vor fast 40 Jahren wurde er entwickelt und seine Fähigkeit…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close