Magnetisches Origami für die Mikroelektronik

Reinraum für die Herstellung dünner Schichten für die Mikroelektronik. Foto: Jürgen Lösel/IFW Dresden

Die Entwicklung dreidimensionaler Mikroelektronik mit exzellenter Leistungsfähigkeit stellt Wissenschaftlerinnen, Wissenschaftler sowie Ingenieurinnen und Ingenieure gleichermaßen vor enorme Herausforderungen. Nach neuen Verfahren wird händeringend gesucht.

Ein solches Verfahren ist zum Beispiel das selbstorganisierte Falten von mikroelektronischen Nanomembranen, das aber starken statistischen Schwankungen unterliegt. Darunter leidet die Ausbeute und Zuverlässigkeit sogenannter mikroskopischer Origami-Strukturen, die den hohen Ansprüchen der Mikroelektronik nicht genügen.

Daher ist es nicht verwunderlich, dass sich noch kein industriell einsetzbares Verfahren etabliert hat, das eine zuverlässige und kostengünstige Produktion von selbstorganisierten dreidimensionalen Bauelementen ermöglicht.

In der Fachzeitschrift „Nature Communications“ stellen nun Wissenschaftler um Prof. Dr. Oliver G. Schmidt eine neue Möglichkeit vor, Nanomembranen zu dreidimensionalen mikroelektronischen Bauelementen zu falten. Oliver G. Schmidt leitet im Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden das Institut für Integrative Nanowissenschaften und hat als Professor für Materialsysteme an der Technischen Universität Chemnitz das dortige Zentrum für Materialien, Architekturen und Integration von Nanomembranen (MAIN) initiiert.

Schmidt ist zudem Träger des Leibniz-Preises, dem wichtigsten Forschungsförderpreis in Deutschland.
„Mit dieser Methode haben wir ein großes Problem der 3D-Herstellung von Architekturen aus mikroelektronischen Nanomembranen gelöst.

Die Herstellung kann durch die magnetische Origami-Methode nun zuverlässig durchgeführt werden und hochleistungsfähige mikroelektronische Bauelemente erzeugen. Eine besondere Herausforderung bleibt die Hochskalierung der Technologie für eine Massenfertigung“, ordnet Prof. Schmidt die Ergebnisse ein.

3D-Energiespeicherelemente mit exzellenten Leistungsdaten entstehen
In dem Verfahren nutzen die Forscher die denkbar einfachste Möglichkeit des Faltens, nämlich das bekannte und seit vielen Jahren etablierte Aufwickeln der Nanomembranen.

Zentraler neuer Bestandteil ist die Entwicklung einer Art magnetischer Fernsteuerung, mit der sich der Falt- oder Aufwickelprozess durch ein von außen angelegtes Magnetfeld programmieren und gezielt steuern lässt.

Zum ersten Mal ist es gelungen, die dreidimensionale Anordnung von Nanomembranen reproduzierbar und kontrolliert über große Längenskalen im Bereich von Zentimetern zu realisieren und dabei eine Ausbeute von mehr als 90 Prozent zu erreichen.

Mit dieser neuen Methode von magnetischen Origami-Strukturen haben die Forscher dreidimensionale Mikro-Energiespeicherelemente hergestellt, die exzellente Kenndaten aufweisen und extrem leicht und kompakt sind. Diese Ergebnisse zeigen eindrucksvoll das Potenzial der magnetfeldunterstützten Faltung von Nanomembranen.

Die Vorteile des magnetischen Mikro-Origami kommen ganz besonders zum Tragen, wenn gut ausgerichtete dreidimensionale Strukturen mit vielen Wicklungen von Nanomembranen erforderlich sind. Dies ist zum Beispiel bei neuartigen Mikrobatterien oder passiven elektronischen Bauelementen wie Kondensatoren, Induktoren und Transformatoren der Fall.

Hintergrund: Falten mikroelektronischer Schichtsysteme

Die etablierte Mikroelektronik beruht auf Komponenten, die in zwei Dimensionen definiert und Schicht für Schicht aufgebaut werden. Für viele mikroelektronische Bauelemente wie Mikrobatterien, Spulen und Transformatoren stellt dieses Verfahren aber keine optimale Lösung dar. Vor allem deshalb, weil die Herstellung der Bauteile zu aufwendig ist oder die Leistungsspezifikationen nicht erreicht werden können. Daher wird nach komplett neuen Ansätzen gesucht, die dritte Dimension zu erobern.

Ein solcher Ansatz stellt das selbstorganisierte Falten von mikroelektronischen Schichtsystemen dar. Die Schichtsysteme werden zunächst mit etablierten Techniken in zwei Dimensionen definiert und transformieren sich anschließend von selbst zu dreidimensionalen Origami-Architekturen. Diese sogenannte „Selbstorganisation“ wird zum Beispiel durch den gezielten Abbau von Verspannung in den Schichtsystemen ausgelöst. Das heißt, die Strukturen schnappen wie eine aufgespannte Feder automatisch zusammen, wenn man sie aus der Verankerung löst.

Video auf dem IFW Youtube Kanal: https://youtu.be/7trDnEPbuu0

Prof. Dr. Oliver G. Schmidt
Leibniz-Institut für Festkörper und Werkstoffforschung Dresden
E-Mail: o.schmidt@ifw-dresden.de

Felix Gabler, Dmitriy D. Karnaushenko, Daniil Karnaushenko, Oliver G. Schmidt; Magnetic origami creates high performance micro devices, Nature Communications 2019. DOI:10.1038/s41467-019-10947-x

https://youtu.be/7trDnEPbuu0 Alte Falttechnik inspiriert neue Technologie
https://www.nature.com/articles/s41467-019-10947-x

Media Contact

Dr. Carola Langer idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ein Hygieneprogramm für Chromosomen

ETH-​Forschende haben in Wirbeltierzellen ein neues zelluläres Kompartiment identifiziert, das Exklusom genannt wird und ein Vorläufer des heutigen eukaryotischen Zellkerns sein könnte. Die Studie zeigt: Säugetierzellen erkennen, bündeln und sortieren…

Weiblicher Resilienz auf der Spur

Organ-on-Chip-Technologie ermöglicht neue Einblicke. Dynamische Resilienz – dahinter verbirgt sich die Widerstandskraft menschlicher Körper gegenüber unvorhergesehenen Veränderungen oder Stressfaktoren. Ältere Menschen und speziell Frauen nach der Menopause sind aufgrund einer…

3D-Druck im Bauwesen: Pionierforschung für das Bauen der Zukunft

Statt Stein auf Stein per Hand gemauert, Schicht um Schicht mit dem Roboter 3D-gedruckt. So könnte die Zukunft des Bauens aussehen. Die ersten Bauten in Deutschland stehen bereits, kürzlich wurde…

Partner & Förderer