Krankenhauskeime mit UVC-Leuchtdioden bekämpfen

Prototyp des UVC-LED-Strahlers mit 118 LEDs – damit sollen Keime auf der Haut abgetötet werden. Das Inset zeigt einen Ausschnitt des LED-Arrays. FBH/P. Immerz

Laut Robert-Koch-Institut kommt es in Deutschland pro Jahr zu 400.000 bis 600.000 Infektionen mit Krankenhauskeimen – etwa 10.000 bis 20.000 Menschen sterben daran (https://www.rki.de/SharedDocs/FAQ/Krankenhausinfektionen-und-Antibiotikaresisten…).

Da multiresistente Erreger (MRE) oft nicht mit Antibiotika behandelt werden können, sind alternative Ansätze gefragt. Ein aussichtsreiches physikalisches Wirkprinzip ist die Bestrahlung mit UVC-Licht. Damit lassen sich Mikroorganismen abtöten, ohne dass sich Resistenzen entwickeln können.

Im Rahmen ihres Joint Lab GaN Optoelectronics haben das Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) und die Technische Universität Berlin (TU) LEDs im fernen ultravioletten (UV) Spektralbereich entwickelt.

Die LEDs emittieren bei Wellenlängen um 230 nm und liefern mehr als ein Milliwatt Ausgangsleistung. Derartige UVC-LEDs sind wegen der technologischen Herausforderungen des verwendeten Materialsystems Aluminium-Galliumnitrid (AlGaN) bislang weltweit kommerziell nicht verfügbar.

Ihr Licht dringt aufgrund der hohen Absorption nicht in die lebenden Schichten der Haut ein. Es wird daher erwartet, dass die Haut – anders als bei langwelliger UVC-Strahlung, wie sie etwa Quecksilberdampflampen emittieren – nicht oder so wenig geschädigt wird, dass die natürlichen Reparaturmechanismen die Einwirkung kompensieren.

Damit, so die Hoffnung der Forscher, könnten MRE ohne nachhaltige Nebenwirkungen abgetötet werden. Im Rahmen des VIMRE-Projekts (Verhinderung der Infektion mit multiresistenten Erregern über in-vivo UVC-Bestrahlung) hat das FBH einen Strahler mit einem Array aus 118 dieser LEDs auf einer Fläche von 8 cm x 8 cm entwickelt und hergestellt.

Er erreicht eine maximale Strahlungsleistung von 0,2 mW/Quadratzentimeter mit mehr als 90% Uniformität über eine Fläche von 6 cm x 6 cm. Der erste Prototyp wurde an die Klinik für Dermatologie der Charité – Universitätsmedizin Berlin für Untersuchungen an Haut geliefert.

Ein weiteres Gerät geht demnächst an das Institut für Hygiene und Umweltmedizin der Universitätsmedizin Greifswald, um die mikrobizide Wirkung zu klären. VIMRE wird im Rahmen des Konsortiums „Advanced UV for Life“ im Programm Zwanzig20 vom Bundesministerium für Bildung und Forschung (BMBF) gefördert.

Prototypen sollen Verfahren validieren
Tests der beiden Projektpartner mit diesen Geräten sollen zeigen, dass sich UVC-Strahlung eignet, um Mikroorganismen und insbesondere MRE abzutöten (Eradizierung). Gleichzeitig soll nachgewiesen werden, dass diese für den Menschen unbedenklich ist, solange bestimmte Strahlendosen eingehalten werden.

Dies wird anhand von Gewebeproben menschlicher Haut sowie an Haut- und Schleimhautmodellen überprüft, da der bevorzugte Lebensraum von Mikroorganismen wie MRE die vordere Nasenhöhle und der Rachenraum sind.

Die Charité führt dazu dosisabhängige Untersuchungen möglicher DNS-Schäden an bestrahlter Haut durch. Die Universitätsmedizin Greifswald ermittelt, wie effektiv der UV-LED-Strahler multiresistente Erreger bei 230 nm abtötet und vergleicht die Werte mit denen von UV-Lampen bei 254 nm und 222 nm.

Miniaturisierung und weitere Einsatzmöglichkeiten – ein Ausblick
LEDs haben vielfältige Vorteile und eröffnen weitere Perspektiven: Sie sind besonders klein und ermöglichen daher miniaturisierte Strahler. Diese könnten endoskopisch in Körperöffnungen oder als Handgeräte verwendet werden. Auch geben sie nur wenig Wärme ab und belasten die Haut kaum.

Zudem kommen sie ohne Hochspannung aus – ein wichtiger Sicherheitsaspekt, da sie an Menschen eingesetzt werden. Der UV-LED-Strahler soll später so weiterentwickelt werden, dass Erreger an schwer zugänglichen Stellen beseitigt werden können.

Interessant könnte das Gerät auch für Coronaviren sein, da Viren ebenfalls durch kurzwelliges UVC-Licht inaktiviert werden. Weil sich SARS-CoV-2 in der ersten Phase im Rachenraum vermehrt, liegt es nahe, entsprechende Strahler dort einzusetzen, um einer COVID-19-Erkrankung vorzubeugen.

Kontakt Presse- und Öffentlichkeitsarbeit:
Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik
Petra Immerz, Communications Manager
Tel. 030.6392-2626
E-Mail petra.immerz@fbh-berlin.de

www.fbh-berlin.de 

https://www.fbh-berlin.de/presse/pressemitteilungen/detail/krankenhauskeime-mit-…

Media Contact

Anja Wirsing Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Die ungewisse Zukunft der Ozeane

Studie analysiert die Reaktion von Planktongemeinschaften auf erhöhtes Kohlendioxid Marine Nahrungsnetze und biogeochemische Kreisläufe reagieren sehr empfindlich auf die Zunahme von Kohlendioxid (CO2) – jedoch sind die Auswirkungen weitaus komplexer…

Neues Standardwerkzeug für die Mikrobiologie

Land Thüringen fördert neues System zur Raman-Spektroskopie an der Universität Jena Zu erfahren, was passiert, wenn Mikroorganismen untereinander oder mit höher entwickelten Lebewesen interagieren, kann für Menschen sehr wertvoll sein….

Hoher Schutzstatus zweier neu entdeckter Salamanderarten in Ecuador wünschenswert

Zwei neue Salamanderarten gehören seit Anfang Oktober 2020 zur Fauna Ecuadors welche aufgrund der dort fortschreitenden Lebensraumzerstörung bereits bedroht sind. Der Fund ist einem internationalen Team aus Wissenschaftlerinnen und Wissenschaftlern…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close