Hoher Druck ordnet Elektronen

Um Druck kontrolliert auf ihre mikroskopische, supraleitende Probe zu bringen (Grafik), nutzen die Forschenden empfindliche Halterungen mit Aktoren auf Basis des Piezoeffekts. (Abb.: KIT)

Strom ohne Verluste transportieren – Supraleiter machen es möglich. Diese Materialien weisen unterhalb bestimmter Temperaturen keinen elektrischen Widerstand mehr auf.

Allerdings sind sie dabei auf extreme Kälte angewiesen: Klassische Supraleiter müssen fast bis zum absoluten Nullpunkt – minus 273 Grad Celsius – heruntergekühlt werden, und selbst Hochtemperatur-Supraleiter benötigen noch Temperaturen von etwa minus 200 Grad Celsius, um Strom widerstandsfrei zu leiten.

Trotz der aufwendigen Kühlung werden Supraleiter bereits in verschiedenen Bereichen eingesetzt. Um Supraleiter zu entwickeln, die bei höheren Temperaturen – eventuell sogar bei Raumtemperatur – funktionieren und damit wesentlich zu einer effizienten Energieversorgung beitragen, müssen entscheidende Zustände und Vorgänge in supraleitenden Materialien grundlegend verstanden werden.

Forscher um Professor Matthieu Le Tacon, Leiter des Instituts für Festkörperphysik (IFP) des KIT, sind dabei nun einen wesentlichen Schritt vorangekommen: Sie haben gezeigt, dass hoher einachsiger Druck konkurrierende Zustände in einem Hochtemperatur-Supraleiter kontrollieren kann.

Neben dem IFP des KIT waren das Max-Planck-Institut für Festkörperforschung in Stuttgart, das Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden, die European Synchrotron Radiation Facility (ESRF) in Grenoble/Frankreich und die Universidad Nacional de La Plata/Argentinien an der Studie beteiligt. Eine Publikation in der Zeitschrift Science stellt die Ergebnisse vor.

Mit hochauflösender inelastischer Röntgenstreuung, bei der Röntgenstrahlen auf eine Probe treffen und das Streulicht vermessen wird, untersuchten die Wissenschaftler den Hochtemperatur-Supraleiter YBa2Cu3O6.67, der zu den Kupraten gehört. Dabei handelt es sich um komplexe Verbindungen aus Kupfer, Sauerstoff und weiteren Elementen.

Kupfer- und Sauerstoffatome bilden zweidimensionale Strukturen. Werden Ladungsträger in diese Ebenen eingeführt, kommt es zu komplexen und miteinander konkurrierenden Zuständen: Die Kopplung zwischen Ladungsträgern führt zur Supraleitung, eine starre Ladungsordnung dagegen verhindert sie.

Zu den Ladungsordnungszuständen gehört die Anordnung der Ladungsträger in streifenförmigen Nanostrukturen, welche die Ladungsträger unbeweglich macht und so die Supraleitung unterdrückt. Auch periodische Schwankungen in der Verteilung der elektrischen Ladungen, sogenannte Ladungsdichtewellen (CDW – charge density waves), verhindern die Supraleitung.

Durch chemische Beimengungen, als Doping bezeichnet, oder durch externe Magnetfelder lassen sich diese Zustände variieren. Die Interpretation solcher Experimente wird allerdings durch Gitterfehler und zufällig festgehaltene magnetische Wirbel erschwert.

Dagegen ermöglicht einachsiger Druck, das Verhältnis zwischen Ladungsdichtewellen und Supraleitung präzise zu untersuchen, wie die Forscher aus Karlsruhe, Stuttgart, Dresden, Grenoble und La Plata in ihrer Arbeit feststellten.

Sie zeigten, dass hoher Druck entlang der Kristallachse a des untersuchten Hochtemperatur-Supraleiters YBa2Cu3O6.67 zu einem weitreichenden dreidimensionalen Ladungsdichtewellen-Zustand führt, ohne dass dazu Magnetfelder erforderlich sind. Mit dieser Zustandsänderung ist auch eine starke Dämpfung der Gitterschwingungsanregung verbunden.

„Unsere Ergebnisse ermöglichen neue Einblicke in die Funktion von Hochtemperatur-Supraleitern und anderen elektronisch korrelierten Materialien“, erklärt Professor Matthieu Le Tacon vom KIT. „Darüber hinaus zeigen sie, dass einachsiger Druck das Potenzial bietet, die Ordnung der Elektronen in solchen Materialien zu kontrollieren.“

Originalpublikation:

H.-H. Kim, S. M. Souliou, M. E. Barber, E. Lefrancois, M. Minola, M. Tortora, R. Heid, N. Nandi, R. A. Borzi, G. Garbarino, A. Bosak, J. Porras, T. Loew, M. König, P. M. Moll, A. P. Mackenzie, B. Keimer, C. W. Hicks, M. Le Tacon: Uniaxial Pressure Control of Competing Orders in a High Temperature Superconductor. Science, 2018. DOI: 10.1126/science.aat4708. (Abstract unter http://science.sciencemag.org/content/362/6418/1040)

Bildunterschrift: Um Druck kontrolliert auf ihre mikroskopische, supraleitende Probe zu bringen (Grafik), nutzen die Forschenden empfindliche Halterungen mit Aktoren auf Basis des Piezoeffekts. (Abb.: KIT)

Weiterer Kontakt:
Dr. Joachim Hoffmann, Redakteur/Pressereferent, Tel.: +49 721 608-21151, E-Mail: joachim.hoffmann@kit.edu

Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 9 300 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 25 500 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen.

Diese Presseinformation ist im Internet abrufbar unter: http://www.sek.kit.edu/presse.php

Dr. Joachim Hoffmann, Redakteur/Pressereferent, Tel.: +49 721 608-21151, E-Mail: joachim.hoffmann@kit.edu

http://science.sciencemag.org/content/362/6418/1040
http://www.sek.kit.edu/presse.php
http://joachim.hoffmann@kit.edu

Media Contact

Monika Landgraf Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Evolutionäre Ursprünge des Appetits

Kieler Forschungsteam zeigt am Beispiel des Süßwasserpolypen Hydra, wie schon Lebewesen mit sehr einfachen Nervensystemen die komplexe Koordination des Sättigungsgefühls und damit zusammenhängende Verhaltensweisen regulieren. Im Laufe der Evolution haben…

Österreichischer Minisatellit OPS-SAT verglüht nach erfolgreicher Mission

Viereinhalb Jahre lang fungierte der an der TU Graz gebaute Nanosatellit als fliegendes Labor im All, um missionskritische Software, Betriebskonzepte und neue Technologien zu erproben. Am 18. Dezember 2019 war…

Ein Pilz verwandelt Zellulose direkt in neuartige Plattformchemikalie

Ein neues Verfahren zur Massenproduktion von erythro- Isozitronensäure aus Abfällen könnte die Substanz zukünftig für die Industrie interessant machen. Der Pilz Talaromyces verruculosus kann die vom Markt bisher wenig beachtete…

Partner & Förderer