Entwicklung ultra-kompakter Radarsensoren für Unternehmen

Sevda Abadpour und Axel Diewald vom Institut für Hochfrequenztechnik und Elektronik (IHE) des KIT positionieren einen Chip auf einer Platine. Gerade bei einer Größe im Mikrometerbereich muss alles perfekt ausgerichtet sein.

(Foto: Joachim Hebeler, KIT)

Im Flugzeug oder auf hoher See ist Radar seit vielen Jahren Alltag, immer öfter wird Radar zudem auch in Autos im „Nahbereich“ eingesetzt. Die enormen Fortschritte in der Halbleitertechnologie der vergangenen Jahre erlauben nun einen weiteren Schritt der Miniaturisierung. Dafür entwickeln Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) in Zusammenarbeit mit dem Fraunhofer-Institut für Angewandte Festkörperphysik (IAF) in Freiburg und dem Industriepartner VEGA Grieshaber KG ultra-kompakte Radarsensoren, die modular aufgebaut und exzellent für die vielseitigen Anforderungen der Industriesensorik geeignet sind.

Eine bisher unerreichte Auflösung kann bei den Radarsensoren erzielt werden, bei denen aufgrund der kleinen Wellenlänge auch die Integration von Antennen auf Chips oder im Chipgehäuse umsetzbar ist. Allerdings wurde die Erschließung des Frequenzbereichs oberhalb von 100 GHz bisher durch extrem komplexe Aufbau- und Verbindungstechnik erschwert, was für lange Zeit eine Limitierung auf dem Weg zu kostengünstigen integrierten Modulen darstellte.

Jetzt werden Varianten aus dem Projekt „Real100G.RF“ der Deutschen Forschungsgemeinschaft (DFG) mit Schaltungen des Fraunhofer IAF zusammengebracht. Daraus wird ein skalierbares Miniatur-Radar-Frontend entwickelt, das dann in Zusammenarbeit mit der Firma VEGA aus Schiltach im Schwarzwald auf die industrielle Verwertbarkeit evaluiert wird.

Das Projekt „Skalierbares THz-Miniaturradar für Industrieanwendungen“ (SATIRE) ist eines von sechs trilateralen Projekten, die von der DFG und der Fraunhofer-Gesellschaft (FhG) gefördert werden. Ziel ist der Transfer von wissenschaftlichen Erkenntnissen in die Wirtschaft. Im trilateralen Projekt SATIRE können Unternehmen früh an Innovationen aus der Forschung partizipieren.

„Das KIT ist eine bundesweit einzigartige Einrichtung und deckt eine außergewöhnliche Bandbreite an Forschungsfeldern ab, den Fokus neben Forschung und Lehre auch immer auf Innovationen gerichtet und damit auf die Zusammenarbeit von Wissenschaft und Wirtschaft, die sich gegenseitig ergänzen und bereichern“, so Theresia Bauer, die baden-württembergische Ministerin für Wissenschaft, Forschung und Kunst. „Ich freue mich deshalb sehr über die Förderung des KIT-Transferprojektes durch die DFG und die Fraunhofer-Gesellschaft. Hier kommt zukunftsweisende Forschung direkt in die Anwendung. Die Förderung zeigt einmal mehr, welchen Stellenwert unsere baden-württembergischen Universitäten und Forschungseinrichtungen auch über die Landesgrenzen hinweg einnehmen.“

Miniaturisierung im Blick

Im Rahmen des Projekts SATIRE soll ein skalierbarer, hochintegrierter 300 GHz-Radarsensor mit über 50 GHz Bandbreite und damit einer Auflösung im Millimeterbereich entstehen. Die inklusive Linse maximal 10 mm x 10 mm x 7 mm großen Module können auf einer Steuerplatine zu einem MIMO-System („Multiple Input Multiple Output“, Verfahren für die Nutzung mehrerer Sende- und Empfangsantennen zur drahtlosen Kommunikation) verschaltet sowie einzeln eingesetzt werden. Dadurch sind die Module besonders gut für die vielseitigen Anforderungen der Industriesensorik geeignet. „Das Projekt nutzt auch die technologischen Möglichkeiten durch das Forschungslabor Mikroelektronik Deutschland am KIT“, sagt der Präsident des KIT, Professor Holger Hanselka. „Als dritte Säule neben Forschung und Lehre steht Innovation am KIT für den anwendungsorientierten Charakter der Forschungs- und Entwicklungsaktivitäten. Diese Innovationstätigkeit baut erneut eine Brücke zwischen Erkenntnis und Anwendung.“

Radarsensoren bei Frequenzen oberhalb von 100 GHz haben ein enormes Potenzial als Ergänzung zu vorhandenen optischen Sensoren, ob Kamera oder Lidar. „Sie erlauben zum einen eine gute Auflösung bei gleichzeitig hoher Robustheit, zum Beispiel gegenüber Rauch oder Staub“, erläutert Professor Thomas Zwick, Projektleiter und Leiter des Instituts für Hochfrequenztechnik und Elektronik (IHE) am KIT. Zum Erreichen einer Auflösung im Millimeterbereich muss die Schaltung eine Ausgangsbandbreite von mindestens 50 GHz mit ausschaltbarem Sender für den TDM-MIMO-Betrieb besitzen („Time Division Multiplex“, Methode zur Signalübertragung). Dazu werden Linsen aus Keramik und aus einem Kunststoff erprobt, 3D-Druck und Spritzgussverarbeitung eingesetzt. Das gesamte Bauteil wird genauso groß sein wie die Linse, d.h. Abmessungen von maximal 10 mm besitzen. „Mit unserem Mini-Radar verbessern wir nicht nur die Messleistung, sondern auch die industrielle Fertigbarkeit“, so Zwick. Die geringe Größe und die präzise Messung eröffnen dabei ganz neue Einsatzmöglichkeiten. Zudem erlaubt die Architektur mit Vervielfachern und externem Lokaloszillator sowie abschaltbarem Sender das Zusammenschalten mehrerer Radarsensoren auf einer Platine zu einem MIMO-Radar.

So entsteht ein vielseitig einsetzbares Radar-Frontend, das sich skalierbar auf unterschiedliche Systeme anpassen lässt und essenziell für Industrieanwendungen ist, da hier eine große Vielzahl an Anwendungen bedient werden muss. Der stark ausgerichtete Praxisbezug ist Kennzeichen des Projekts, bei dem Unternehmen die Möglichkeit erhalten, schon früh an Innovationen aus der Forschung zu partizipieren – in diesem Fall die Firma VEGA.

Das Projekt SATIRE

Die sechs Projekte, bei denen Hochschulen, Fraunhofer-Institute und Unternehmen miteinander kooperieren, werden von der DFG und der Fraunhofer-Gesellschaft drei Jahre lang mit insgesamt rund 5 Millionen Euro gefördert. Bei „Skalierbares THz-Miniaturradar für Industrieanwendungen“ (SATIRE) sind die Projektleitenden Professor Thomas Zwick vom KIT, Dr. Arnulf Leuther vom Fraunhofer-Institut für Angewandte Festkörperphysik (IAF), Freiburg, und der Anwendungspartner VEGA Grieshaber KG, Schiltach.

Weiterer Kontakt:

Johannes Wagner
Redakteur/Pressereferent
Tel.: +49 721 608-41175
E-Mail: johannes.wagner@kit.edu

Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 9.300 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 24.400 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen. Das KIT ist eine der deutschen Exzellenzuniversitäten.

Diese Presseinformation ist im Internet abrufbar unter: https://www.kit.edu/kit/presseinformationen.php

Wissenschaftliche Ansprechpartner:

Johannes Wagner
Redakteur/Pressereferent
Tel.: +49 721 608-41175
E-Mail: johannes.wagner@kit.edu

Media Contact

Monika Landgraf Strategische Entwicklung und Kommunikation - Gesamtkommunikation
Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer