Eine Frage der Affinität: Wie man Materialien für organische Solarzellen entwirft

Dye molecules in modern organic solar cells lead to a two-fold improvement of organic solar cell efficiency as compared to the widely used fullerenes.
© MPI-P

Eine Zusammenarbeit von Wissenschaftlerinnen und Wissenschaftlern des Max-Planck-Instituts für Polymerforschung (MPI-P) in Deutschland und der King Abdullah University of Science and Technology (KAUST) in Saudi-Arabien hat organische Solarzellen untersucht und Designregeln für lichtabsorbierende Farbstoffe abgeleitet, die dazu beitragen können, diese Zellen effizienter zu machen und gleichzeitig das Absorptionsspektrum der Zellen an die Bedürfnisse der gewählten Anwendung anzupassen.

Die meisten von uns sind mit Solarzellen aus Silizium vertraut, die vielfach auf den Dächern moderner Häuser zu finden sind. Diese Zellen bestehen aus zwei Siliziumschichten, die verschiedene Atome wie Bor oder Phosphor enthalten. Werden diese Schichten kombiniert, lenken sie die durch das absorbierte Sonnenlicht erzeugten Ladungen zu den Elektroden – dieser (Foto-)Strom kann dann zum Antrieb elektronischer Geräte verwendet werden.

Bei organischen Solarzellen ist die Situation anders: Hier werden zwei organische Materialien miteinander vermischt, anstatt sie in einer Schichtstruktur anzuordnen. Es handelt sich um Mischungen verschiedener Arten von Molekülen. Eine Molekül-Art, der Akzeptor, nimmt gerne Elektronen von der anderen Art, dem Donor, auf. Um zu quantifizieren, wie wahrscheinlich ein „Elektronentransfer“ zwischen diesen Materialien stattfindet, misst man die so genannte „Elektronenaffinität“ und „Ionisierungsenergie“ jedes Materials. Diese Größen geben an, wie einfach es ist, einem Molekül ein Elektron hinzuzufügen oder ein Elektron zu entfernen. Neben der Bestimmung des Wirkungsgrades organischer Solarzellen steuern die Elektronenaffinität und die Ionisierungsenergie auch andere Materialeigenschaften, wie beispielsweise Farbe und Transparenz.

Durch die Paarung von Donor- und Akzeptormaterialien entsteht eine Solarzelle. In einer organischen Solarzelle übertragen Lichtteilchen („Photonen“) ihre Energie auf Elektronen. Angeregte Elektronen hinterlassen positive Ladungen, so genannte „Löcher“. Diese Elektron-Loch-Paare werden dann aufgrund der Unterschiede in der Elektronenaffinität und der Ionisationsenergie der beiden Materialien an deren Grenzfläche getrennt.
Bisher gingen die Wissenschaftler davon aus, dass sowohl die Elektronenaffinität als auch die Ionisierungsenergie für die Funktionalität der Solarzelle gleich wichtig sind.

Forschende von KAUST und MPI-P haben nun entdeckt, dass bei vielen Donor-Akzeptor-Mischungen jedoch vor allem die Differenz der Ionisationsenergie zwischen den beiden Materialien die Effizienz der Solarzelle bestimmt. Die Kombination von Ergebnissen aus optischen Spektroskopie-Experimenten, die in der Gruppe von Frédéric Laquai an der KAUST durchgeführt wurden, sowie von Computersimulationen, die in der Gruppe von Denis Andrienko, MPI-P, in dem von Kurt Kremer geleiteten Arbeitskreis durchgeführt wurden, ermöglichte die Ableitung präziser Designregeln für molekulare Farbstoffe, die auf die Maximierung der Effizienz der Solarzelle abzielen.

„In Zukunft wäre es zum Beispiel denkbar, transparente Solarzellen herzustellen, die nur Licht außerhalb des für den Menschen sichtbaren Bereichs absorbieren – dann aber mit maximaler Effizienz in diesem Bereich“, sagt Denis Andrienko, Mitautor der in der Zeitschrift „Nature Materials“ veröffentlichten Studie. „Mit solchen Solarzellen könnten ganze Häuserfronten als aktive Fläche genutzt werden“, fügt Laquai hinzu.

Die Autoren gehen davon aus, dass sie mit diesen Studien einen Wirkungsgrad der Solarzellen von 20 % erreichen können, ein Ziel, das die Industrie für eine kostengünstige Anwendung der organischen Photovoltaik im Auge hat.

Wissenschaftliche Ansprechpartner:

Dr. Denis Andrienko
Tel.: +49 6131 379-147
eMail: denis.andrienko@mpip-mainz.mpg.de

Originalpublikation:

Karuthedath, S., Gorenflot, J., Firdaus, Y. et al. Intrinsic efficiency limits in low-bandgap non-fullerene acceptor organic solar cells. Nat. Mater. (2020).
https://doi.org/10.1038/s41563-020-00835-x

Weitere Informationen:

https://www2.mpip-mainz.mpg.de/~andrienk/ – Webseite von Denis Andrienko

http://www.mpip-mainz.mpg.de

Media Contact

Dr. Christian Schneider Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

KI-basierte Software in der Mammographie

Eine neue Software unterstützt Medizinerinnen und Mediziner, Brustkrebs im frühen Stadium zu entdecken. // Die KI-basierte Mammographie steht allen Patientinnen zur Verfügung und erhöht ihre Überlebenschance. Am Universitätsklinikum Carl Gustav…

Mit integriertem Licht zu den Computern der Zukunft

Während Computerchips Jahr für Jahr kleiner und schneller werden, bleibt bisher eine Herausforderung ungelöst: Das Zusammenbringen von Elektronik und Photonik auf einem einzigen Chip. Zwar gibt es Bauteile wie MikroLEDs…

Antibiotika: Gleicher Angriffspunkt – unterschiedliche Wirkung

Neue antimikrobielle Strategien sind dringend erforderlich, um Krankheitserreger einzudämmen. Das gilt insbesondere für Gram-negative Bakterien, die durch eine dicke zweite Membran vor dem Angriff von Antibiotika geschützt sind. Mikrobiologinnen und…

Partner & Förderer