Brennstoffzellen: Oxidationsprozesse von Phosphorsäure aufgeklärt

Die Illustration zeigt vier unterschiedliche Oxidationspfade (1-4) von wässriger Phosphorsäure (H3PO3), die mit XANES aufgeklärt werden konnten. Alle diese Reaktionen hängen von der vorhandenen Feuchtigkeit ab. © HZB

Die Wechselwirkungen zwischen Phosporsäure und dem Platin-Katalysator in Hochtemperatur-PEM-Brennstoffzellen sind komplexer als bisher angenommen. Röntgen-Experimente an BESSY II in einem mittleren Energiebereich (tender x-rays) haben die vielfältigen Oxidationsprozesse an der Platin-Elektrolyt-Grenzfläche entschlüsselt. Die Ergebnisse zeigen auch, dass die Feuchtigkeit in der Brennstoffzelle diese Prozesse beeinflusst, so dass sich hier Möglichkeiten bieten, um Lebensdauer und Wirkungsgrad von Brennstoffzellen zu erhöhen.

Wasserstoff-Brennstoffzellen wandeln die chemische Energie von Wasserstoff (H2) in elektrische Energie um. Als mikro-stationäre Stromquellen eignen sich vor allem die Hochtemperatur-Polymerelektrolytmembran-Brennstoffzellen (HT-PEMFCs). Ein Nachteil dieser HT-PEMFCs ist jedoch, dass der Protonenleiter Phosphorsäure (H3PO4) aus der H3PO4-dotierten Polybenzimidazol-Membran auslaugt und den Platinkatalysator vergiftet. Neuere Studien zeigen weitere Komplikationen während des Betriebs der HT-PEMFC: Dabei wird ein Teil des H3PO4 zu H3PO3 reduziert, was zu einer weiteren Vergiftung der Platinkatalysatoren und damit zu einem erheblichen Leistungsverlust führen kann.

Eine frühere Studie des Teams von Prof. Dr. Marcus Bär zeigte, dass an der Grenzfläche zwischen Platin und wässrigem H3PO3 auch gegenläufige Prozesse stattfinden und dass die Wechselwirkungen zwischen dem Platinkatalysator und H3PO3/ H3PO4 sehr komplex sind: Während H3PO3 zu einer Vergiftung des Platinkatalysators führen kann, kann Platin gleichzeitig die Oxidation von H3PO3 zurück zu H3PO4 katalysieren.

Nun hat Bärs Team das Oxidationsverhalten von wässrigem H3PO3 unter Bedingungen untersucht, die den Betriebsbedingungen von HT-PEMFCs nahekommen. Die chemischen Prozesse wurden in einer beheizbaren elektrochemischen Zelle analysiert, die für In-situ-Röntgenuntersuchungen geeignet ist. Die Experimente fanden an der kürzlich im Energy Materials In-situ Laboratory Berlin (EMIL) eingerichteten OÆSE-Endstation statt, und zwar mit intensivem Röntgenlicht im Energiebereich von 2 keV – 5 keV (zwischen weicher und harter Röntgenstrahlung, englisch: tender x-rays), das von der EMIL-Beamline an der Röntgenquelle BESSY II bereitgestellt wird. In diesem Energiebereich lassen sich mit der Methode der Röntgenabsorptions-Nahkantenstrukturspektroskopie (englisch: X-ray absorption near-edge structure spectroscopy, kurz XANES) Oxidationsprozesse von H3PO3 zu H3PO4 verfolgen.

„Wir haben damit verschiedene Prozesse für diese Oxidationsreaktion aufgedeckt, darunter die platinkatalysierte chemische Oxidation, die elektrochemische Oxidation unter positiver Potentialvorspannung an der Platinelektrode und die wärmegeförderte Oxidation. Diese spektroskopischen In-situ-Ergebnisse werden auch durch Ionenaustauschchromatographie und elektrochemische In-situ-Charakterisierungen bestätigt“, erklärt Enggar Wibowo, Erstautor der Studie und Doktorand in Bärs Team. „Bemerkenswerterweise sind alle diese Oxidationswege mit Reaktionen mit Wasser verbunden. Das zeigt, dass die Feuchtigkeit in der Brennstoffzelle einen erheblichen Einfluss auf diese Prozesse hat.“

Damit weisen die Ergebnisse auch auf mögliche Verbesserungen in den Betriebsbedingungen von HT-PEM-Brennstoffzellen hin, z.B. durch eine Steuerung der Feuchtigkeit, um H3PO3 zu H3PO4 zu oxidieren. „Die Betriebsbedingungen von HT-PEM-Brennstoffzellen könnten damit optimiert werden, um eine Vergiftung des Katalysators durch H3PO3 zu verhindern und die Effizienz dieser Brennstoffzellen zu erhöhen“, so Wibowo.

„Die Arbeit klärt einen wichtigen Degradationspfad von Brennstoffzellen auf und ist ein Beitrag auf dem Weg zu einer Wasserstoff-basierten Energieversorgung“, sagt Marcus Bär. „Sie zeigt auch den großen Nutzen des mittleren „tender“ Röntgenbereichs, und wir freuen uns auf BESSY III, das diese Lücke zwischen weicher und harter Röntgenstrahlung schließen soll“, fügt er hinzu.

Originalpublikation:

J. Am. Chem. Soc. (2024): Elucidating the Complex Oxidation Behavior of Aqueous H3PO3 on Pt Electrodes via In Situ Tender X-ray Absorption Near-Edge Structure Spectroscopy at the P K-Edge

Romualdus Enggar Wibowo, Raul Garcia-Diez, Tomas Bystron, Marianne van der Merwe, Martin Prokop, Mauricio D. Arce, Anna Efimenko, Alexander Steigert, Milan Bernauer, Regan G. Wilks, Karel Bouzek, and Marcus Bär

DOI: 10.1021/jacs.3c12381

https://www.helmholtz-berlin.de/pubbin/news_seite?nid=26486&sprache=de&seitenid=1

Media Contact

Dr. Antonia Rötger Kommunikation
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Klimawandel führt zu mehr alpinen Gefahren

Von Steinschlag bis Eislawine: So hat der Klimawandel die Naturgefahren in den Alpen verändert. Der Klimawandel intensiviert vielerorts Naturgefahren in den Bergen und stellt den Alpenraum damit vor besondere Herausforderungen….

SAFECAR-ML: Künstliche Intelligenz beschleunigt die Fahrzeugentwicklung

Mit neuen Methoden des Maschinellen Lernens gelingt es, Daten aus der Crashtest-Entwicklung besser zu verstehen und zu verarbeiten. Im Projekt SAFECAR-ML entsteht eine automatisierte Lösung zur Dokumentation virtueller Crashtests, die…

Robotergestütztes Laserverfahren ermöglicht schonende Kraniotomie im Wachzustand

Um während neurochirurgischen Eingriffen komplexe Hirnfunktionen testen zu können, werden diese an wachen, lokal anästhesierten Patienten durchgeführt. So können die Chirurgen mit ihnen interagieren und prüfen, wie sich ihr Eingriff…