Wirkmechanismus des potenziellen Corona-Medikaments Molnupiravir entschlüsselt

The antiviral drug candidate molnupiravir (yellow) is incorporated into the viral RNA, where it leads to mutations (purple) that ultimately prevent the virus from replicating.
(c) Kabinger, Dienemann, Cramer / Max Planck Institute for Biophysical Chemistry

Die USA sicherten sich kürzlich 1,7 Millionen Dosen eines Wirkstoffs, der Covid-19-Patient*innen helfen könnte. Molnupiravir bremste in vorläufigen Studien das Coronavirus SARS-Cov-2 bei seiner Vermehrung aus.

Forschende am Göttinger Max-Planck-Institut (MPI) für biophysikalische Chemie und der Julius-Maximilians-Universität (JMU) Würzburg haben jetzt den zugrundeliegenden molekularen Mechanismus aufgeklärt. Wie sie zeigen konnten, schleust der Wirkstoff RNA-ähnliche Bausteine in das Erbgut des Virus ein. Wird das Erbgut weiter vermehrt, entstehen fehlerhafte RNA-Kopien. Der Erreger kann sich dann nicht mehr ausbreiten. Molnupiravir wird derzeit in der Klinik erprobt.

Seit Beginn der Corona-Pandemie werden zahlreiche wissenschaftliche Projekte weltweit vorangetrieben, die untersuchen, wie sich das neue Virus bekämpfen lässt. Forschende entwickeln auf Hochtouren diverse Impfstoffe und Medikamente – mit unterschiedlichem Erfolg. Letztes Jahr gewann der antivirale Wirkstoff Remdesivir an Aufmerksamkeit, als er als erstes COVID-19-Medikament zugelassen wurde. Studien, darunter Arbeiten von Patrick Cramer am MPI für biophysikalische Chemie und Claudia Höbartner von der JMU Würzburg, zeigten jedoch, warum das antivirale Mittel bei Covid-19 eher schwach wirkt.

Auch Molnupiravir ist ein antiviraler Wirkstoffkandidat, der ursprünglich als Grippemedikament entwickelt wurde. Basierend auf vorläufigen klinischen Studien verspricht die Substanz eine hohe Wirksamkeit gegen SARS-CoV-2. „Zu wissen, dass ein neues Medikament anschlägt, ist wichtig und gut. Allerdings ist es genauso wichtig zu verstehen, wie Molnupiravir auf molekularer Ebene wirkt, auch um Einsichten für die weitere Entwicklung antiviraler Substanzen zu erhalten.“, erklärt Max-Planck-Direktor Cramer. „Nach unseren Ergebnissen wirkt Molnupiravir in zwei Phasen.“

Mutationen im Erbgut stoppen das Virus

Molnupiravir wird nach oraler Einnahme erst durch die Verstoffwechselung im Körper aktiviert. Körperzellen nehmen das Mittel auf und wandeln es in RNA-ähnliche Bausteine um. In der ersten Phase schleust die virale Kopiermaschine, RNA-Polymerase genannt, die Bausteine in das Virus-RNA-Erbgut ein. Im Gegensatz zu Remdesivir, das die virale RNA-Polymerase ausbremst, beeinträchtigt Molnupiravir die Funktion der Kopiermaschine allerdings nicht direkt. Stattdessen verbinden sich die RNA-ähnlichen Bausteine in der zweiten Phase mit den Bausteinen des viralen Erbguts. „Wird dieses vervielfältigt, um neue Viren zu produzieren, enthält es zahlreiche Fehler, sogenannte Mutationen. Dadurch kann sich der Erreger nicht mehr vermehren“, erläutert Florian Kabinger, Doktorand in Cramers Abteilung. Gemeinsam mit den anderen Erstautoren, Carina Stiller und Jana Schmitzová, führte er die entscheidenden Experimente für die Studie durch.

Der Zwei-Phasen-Wirkmechanismus von Molnupiravir scheint auch bei anderen RNA-Viren Mutationen auszulösen und diese somit an einer weiteren Ausbreitung zu hindern. „Mit dem Wirkstoff ließe sich möglicherweise ein ganzes Spektrum von viralen Erkrankungen behandeln“, sagt Höbartner, Professorin für Chemie an der Universität Würzburg. „Molnupiravir hat viel Potenzial.“ Zurzeit befindet sich der vielversprechende Wirkstoff in der letzten Entwicklungsphase (Phase III), in der er an einer großen Zahl von Patient*innen erprobt wird. Ob Molnupiravir wirklich sicher ist und als Medikament zugelassen werden kann, wird voraussichtlich in der zweiten Jahreshälfte bekannt. Die US-Regierung ist dabei optimistisch: Sie hat sich bereits rund 1,7 Million Dosen im Wert von über einer Milliarde Dollar gesichert.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Patrick Cramer
Abteilung Molekularbiologie, Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: 0551 201-2800
E-Mail: patrick.cramer@mpibpc.mpg.de

Prof. Dr. Claudia Höbartner
Institut für Organische Chemie, Universität Würzburg
Tel.: 0931 31-89693
E-Mail: claudia.hoebartner@uni-wuerzburg.de

Originalpublikation:

Kabinger F, Stiller C, Schmitzová J, Dienemann C, Hillen HS, Höbartner C, & Cramer P: Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nat Struct Mol Biol (2021),
doi: https://doi.org/10.1038/s41594-021-00651-0

Weitere Informationen:

https://www.mpibpc.mpg.de/18021364/pr_2118 – Original-Pressemitteilung
https://www.mpibpc.mpg.de/de/cramer – Webseite der Abteilung Molekularbiologie von Patrick Cramer, Max-Planck-Institut für biophysikalische Chemie, Göttingen
https://go.uniwue.de/hoebartner-group – Webseite der Gruppe Organische und biomolekulare Chemie von Claudia Höbartner, Universität Würzburg

Media Contact

Dr. Carmen Rotte Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für biophysikalische Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer