Wie sich das Gehirn im Raum orientiert

Stimmt die Erwartung des Gehirns nicht mit dem Gesehenen überein, korrigiert das Gehirn den Maßstab in seiner räumlichen Karte, mit der es die Umgebung repräsentiert.
HHU / Eckart Zimmermann

Psychologie: Veröffentlichung in Current Biology

Psychologinnen und Psychologen der Heinrich-Heine-Universität Düsseldorf (HHU) haben untersucht, wie Menschen feststellen, wo sich Objekte im Raum befinden. Warum sie dabei die visuelle Wahrnehmung irritierten und wie sie daraus auf die Raumwahrnehmung im Gehirn zurückschließen, stellen sie in der heutigen Onlineausgabe der Fachzeitschrift „Current Biology“ vor.

Im menschlichen Gehirn wird der Ort von Objekten durch räumliche Karten vermittelt. Diese Karten bilden, ähnlich wie bei einem Foto, die Umwelt ab. Um die genaue Position eines Objektes und die reale Distanz zu ihm zu erkennen, ist aber ein Maßstab erforderlich.

Eine mögliche Erklärung, wie das Gehirn den Maßstab festlegt, beruht auf der Bewegung relativ zum Objekt, was zum Beispiel durch die Änderung der Blickrichtung geschehen kann. Je weiter sich ein Objekt in der Peripherie befindet, desto größer ist die durch die Blickbewegung erfasste Winkeländerung. Wenn der Betrachter – durch die Raumkarte im Gehirn angeleitet – den Blick auf das Objekt richtet, es aber nicht genau trifft, weiß er, dass der Maßstab ungenau war. Der Fehlerwinkel, um den der Blick das Objekt nicht trifft, gibt dem Gehirn an, um welchen Betrag der Maßstab in den Raumkarten zu korrigieren ist.

Das Team um Prof. Dr. Eckart Zimmermann von der Arbeitsgruppe Wahrnehmungspsychologie am HHU-Institut für experimentelle Psychologie hat dieses Modell überprüft. Sie setzten dazu eine virtuelle Umgebung ein und maßen mittels eines „Eyetrackers“, wie sich die Blickrichtung von Probanden bewegt.

Dabei haben sie den Wahrnehmungsprozess bewusst gestört: Während der Blickbewegung verschoben die Psychologen das virtuelle Objekt – ein Prozess, den der Betrachter nicht wahrnehmen kann. Nach der Blickrichtungsänderung merkte dann das Gehirn der Versuchsperson, dass sich das Objekt nicht dort befindet, wo es laut seiner Karte zu erwarten wäre. Als Konsequenz aus diesem Widerspruch zu seiner eigenen Prädiktion korrigiert das Gehirn den internen Maßstab.

Mit diesen experimentellen Ergebnissen bestätigen sie, dass motorische Prozesse für die räumliche Wahrnehmung eine große Rolle spielen. „Dieser Befund stellt die Intuition auf den Kopf, nach der wir erst etwas wahrnehmen, um daraufhin zu handeln“, betont Prof. Zimmermann, und weiter: „Ergebnisse wie dieses belegen die Vermutung, dass die Wahrnehmung, um akkurat zu sein, die Motorik genauso benötigt wie umgekehrt.“

Originalpublikation:

Celine Cont, Eckart Zimmermann, The motor representation of sensory experience, Current Biology, published online December 07, 2020

DOI: 10.1016/j.cub.2020.11.032

http://www.hhu.de/

Media Contact

Dr.rer.nat. Arne Claussen Stabsstelle Presse und Kommunikation
Heinrich-Heine-Universität Düsseldorf

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer