Wie sich Bakterien selbst organisieren können

Je nach der Verfolgungs- und Vermeidungsinteraktion zwischen zwei Arten A und B können sich auf globaler Ebene unterschiedliche Muster der Selbstorganisation herausbilden
Bild: MPI-DS / LMP

Ein neues Modell zeigt wie Interaktionen zwischen Bakterienarten dynamische Muster hervorrufen können. Strukturelle Muster können durch die Interaktionen bei der Verfolgung zwischen zwei unterschiedlichen Bakterienarten entstehen. In einem neuen Modell beschreiben Wissenschaftler des Max-Planck-Instituts für Dynamik und Selbstorganisation (MPI-DS), wie Wechselwirkungen auf der individuellen Ebene zu einer globalen Selbstorganisation von Arten führen können. Ihre Erkenntnisse geben Einblicke in allgemeine Mechanismen kollektiven Verhaltens.

In einer aktuellen Studie haben Wissenschaftler der Abteilung Physik Lebender Materie am MPI-DS ein Modell entwickelt, das Kommunikationswege in Bakterienpopulationen beschreibt. Bakterien zeigen ein allgemeines Organisationsmuster, indem sie die Konzentration von Chemikalien in ihrer Umgebung wahrnehmen und ihre Bewegung danach ausrichten.

Die Struktur wird erst auf höherer Ebene sichtbar

„Wir haben die nicht-reziproke Interaktion zwischen zwei Bakterienarten modelliert“, erklärt Erstautor Yu Duan die Studie. „Dies bedeutet, dass Spezies A die Spezies B verfolgt, während B versucht, sich von A zu entfernen“, fährt er fort. Die Forscher fanden heraus, dass diese Verfolgungs- und Vermeidungsinteraktion ausreicht, um ein strukturelles Muster zu bilden. Die Art des Musters hängt dabei von der Stärke der Interaktion ab. Dies ergänzt eine frühere Studie, in der ein Modell vorgeschlagen wurde, das auch die Interaktionen zwischen den Bakterien innerhalb einer Art bei der Musterbildung mit einbezog.

In dem neuen Modell, welches die Auswirkung der bakteriellen Motilität berücksichtigt, sind weder Adhäsion noch Ausrichtung erforderlich, um komplexe Superstrukturen zu bilden, die Millionen von Individuen umfassen. „Obwohl die bakterielle Populationsdynamik eine globale Ordnung zeigt, ist dies auf der Ebene der einzelnen Bakterien nicht der Fall. Insbesondere scheint sich ein einzelnes Bakterium ungeordnet zu bewegen, wobei die Struktur erst auf einer höheren Ebene sichtbar wird – was sehr faszinierend ist“, fasst Benoît Mahault, Gruppenleiter in der Abteilung Physik Lebender Materie am MPI-DS, zusammen.

Ein allgemeines Modell für kollektives Verhalten

Das Modell erlaubt auch die Betrachtung von mehr als zwei Arten, wodurch sich die Anzahl der möglichen Interaktionen und der entstehenden Muster erhöht. Es ist ebenso nicht auf Bakterien beschränkt, sondern kann auf eine Vielzahl von kollektiven Verhaltensweisen angewendet werden. Dazu gehören lichtgesteuerte Mikroschwimmer, soziale Insekten, Tiergruppen und Roboterschwärme. Die Studie liefert daher allgemeine Erkenntnisse über die Mechanismen, die für die Bildung gesamtheitlicher Strukturen in Netzwerken aus vielen Komponenten verantwortlich sind.

Originalpublikation:

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.148301

Weitere Informationen:

https://www.ds.mpg.de/4028073/231006_collective

Media Contact

Dr. Manuel Maidorn Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Dynamik und Selbstorganisation

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

FDmiX: Schnelle und robuste Serienproduktion von Nanopartikeln

Verkapselungstechnologie der nächsten Generation… Nukleinsäure-basierte Medikamente wie mRNA-Impfstoffe bieten ein enormes Potenzial für die Medizin und eröffnen neue Therapieansätze. Damit diese Wirkstoffe gezielt in die Körperzellen transportiert werden können, müssen…

Sensor misst Sauerstoffgehalt in der Atemluft

Eine zu geringe oder zu hohe Sauerstoffsättigung im Blut kann bleibende körperliche Schäden bewirken und sogar zum Tod führen. In der Intensiv- und Unfallmedizin wird die Sauerstoffkonzentration der Patientinnen und…

Neue MRT-Technik erkennt Schlaganfälle in kürzester Zeit

Tag gegen den Schlaganfall: Forschende der Universitätsmedizin Mainz haben im Rahmen einer Studie erstmals eine KI-gestützte Magnetresonanz-Tomographie (MRT)-Methode untersucht, um akute ischämische Schlaganfälle effizienter detektieren zu können. Dabei setzten sie…

Partner & Förderer