Wie man Krebszellen erstickt

Durch die Bedingungen in einer Krebszelle können sich Moleküle – hier hellgrün gezeichnet – zu langen Haaren zusammenfügen. Diese stoppen dann die Umwandlung von Sauerstoff in Energie, welche die Zelle zum Wachstum benötigt.
© Max-Planck-Institut für Polymerforschung

Selbstassemblierende Moleküle könnten bei der Krebstherapie helfen.

Die Entwicklung medizinischer Behandlungen gegen Krebs ist weltweit ein großes Forschungsthema – doch Krebszellen schaffen es oft, die gefundenen Lösungen zu umgehen. Wissenschaftlerinnen und Wissenschaftler um Tanja Weil und David Ng, Gruppenleiter am Max-Planck-Institut für Polymerforschung (MPI-P), haben nun die Gegenmaßnahmen des Krebses genauer unter die Lupe genommen um diese zu stoppen. Indem sie die zellulären Komponenten stören, die für die Umwandlung von Sauerstoff in chemische Energie verantwortlich sind, konnten sie erste Erfolge bei der Eliminierung von Zellen aus unbehandelbarem metastasierendem Krebs nachweisen.

Die Behandlung von Krebs ist ein langwieriger Prozess, da sich Reste lebender Krebszellen oft zu aggressiven Formen weiterentwickeln und unbehandelbar werden. Daher umfassen die Behandlungspläne oft mehrere Medikamentenkombinationen und/oder eine Strahlentherapie, um einen Rückfall zu verhindern. Um die Vielfalt der Krebszelltypen zu bekämpfen, wurden moderne Medikamente entwickelt, die auf spezifische biochemische Prozesse abzielen, die in jedem Zelltyp einzigartig sind.

Krebszellen sind jedoch sehr anpassungsfähig und in der Lage, Mechanismen zu entwickeln, um die Auswirkungen der Behandlung zu umgehen. „Wir wollen eine solche Anpassung verhindern, indem wir in den Grundpfeiler des zellulären Lebens eingreifen, nämlich wie Zellen atmen – das heißt Sauerstoff aufnehmen – und so chemische Energie für das Wachstum produzieren“, sagt David Ng, Gruppenleiter am Max-Planck-Institut für Polymerforschung.

Das Forscherteam hat einen synthetischen Wirkstoff hergestellt, der in die Zellen eindringt, auf die dort herrschenden Bedingungen reagiert und einen chemischen Prozess initiiert. Dadurch binden sich die Moleküle des Wirkstoffs aneinander und bilden winzige Härchen, die tausendmal dünner sind als ein menschliches Haar. „Diese Härchen sind fluoreszierend, so dass man sie direkt mit einem Mikroskop betrachten kann, wenn sie sich bilden“, sagt Zhixuan Zhou, Alexander-von-Humboldt-Stipendiat und Erstautor der Arbeit.

Die Wissenschaftler überwachten den Sauerstoffverbrauch in verschiedenen Zelltypen und fanden heraus, dass die Haare alle von ihnen daran hindern, Sauerstoff in ATP umzuwandeln – ein Molekül, das für die Energieversorgung der Zellen verantwortlich ist. Der Prozess funktionierte sogar bei Zellen, die aus unbehandelbarem metastasierendem Krebs stammen. Das Ergebnis war, dass die Zellen innerhalb von vier Stunden abstarben. Nach einigen weiteren Jahren der Forschung hoffen die Wissenschaftlerinnen und Wissenschaftler, dass sie eine neue Methode zur Behandlung von bisher unheilbarem Krebs entwickeln können.

Weil, Ng und seine Kollegen haben unter kontrollierten Laborbedingungen ein vielversprechendes Ergebnis erzielt und werden weiter erforschen, wie diese winzigen Härchen die Umwandlung von Sauerstoff in chemische Energie verhindern. Bei weiterer Entwicklung könnten diese Objekte in Zukunft möglicherweise auch zur Kontrolle anderer zellulärer Prozesse manipuliert werden, um andere wichtige Krankheiten zu behandeln.

Ihre Ergebnisse haben sie im renommierten Journal of the American Chemical Society veröffentlicht.

Wissenschaftliche Ansprechpartner:

Dr. David Ng
Gruppenleiter
Tel.: 06131-379 136
Mail: david.ng@mpip-mainz.mpg.de

Originalpublikation:

Zhou, Z.; Maxeiner, K.; Moscariello, P.; Xiang, S.; Wu, Y.; Ren, Y.; Whitfield, C.; Xu, L.; Kaltbeitzel, A.; Han, S. et al.: In Situ Assembly of Platinum(II)-Metallopeptide Nanostructures Disrupts Energy Homeostasis and Cellular Metabolism. Journal of the American Chemical Society 144 (27), pp. 12219 – 12228 (2022)
https://dx.doi.org/10.1021/jacs.2c03215

Weitere Informationen:

https://www.mpip-mainz.mpg.de/ng Webseite von David Ng
https://www.mpip-mainz.mpg.de/weil Arbeitskreis von Tanja Weil

Media Contact

Dr. Christian Schneider Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer