Wie die äußere Struktur die Funktion von Enzymen beeinflussen kann

Markus Piotrowski vor einer Kollage des Enzyms, das er untersucht hat. © RUB, Marquard

Nur einen einzelnen Baustein getauscht

Da die beiden untersuchten pflanzlichen Enzyme, sogenannte Nitrilasen, einander sehr ähnlich sind, konnten die Wissenschaftler ihre Bausteine Stück für Stück austauschen. „Dabei haben wir festgestellt, dass es ausreicht, einen einzelnen Baustein an der Oberfläche auszutauschen, um dafür zu sorgen, dass das eine Enzym jeweils das Substrat des anderen umsetzt“, erklärt Privatdozent Dr. Markus Piotrowski vom Lehrstuhl für Molekulargenetik und Physiologie der Pflanzen der RUB.

Durchbruch durch Elektronenmikroskopie

Um zu untersuchen, wieso eine Veränderung der Oberfläche die Substratbindung im Inneren beeinflussen kann, nutzten die Forscher die Elektronenmikroskopie. Die untersuchten Nitrilasen lagern sich zu größeren Spiralen zusammen, die groß genug sind, um sie durch Elektronenmikroskopie sichtbar machen zu können.

„So konnten wir sehen, dass die Veränderung an der Oberfläche zu unterschiedlich dichten Packungen der Enzymmoleküle in der Spirale führt“, beschreibt Piotrowski. „Das führt vermutlich dazu, dass die Substratbindestelle unterschiedlich stark zusammengedrückt wird.“ In stärker zusammengepresstem Zustand ist die Bindetasche für größere Substratmoleküle nicht mehr zugänglich.

Auch biotechnologisch relevant

Die Nitrilasen sind für die Forscher ein Modell für die Evolution der Enzyme, werden aber auch in der chemischen und pharmazeutischen Industrie als Biokatalysatoren eingesetzt. Bisherige Versuche, die Enzyme durch gezielte Veränderungen an der Substratbindestelle zu modifizieren, waren aber weitgehend erfolglos.

„Unsere Ergebnisse zeigen, dass man auch auf die sogenannte Quartärstruktur achten muss, also die Art, wie sich die einzelnen Enzymmoleküle zusammenlagern“, sagt Markus Piotrowski. Gezielte Veränderungen der Enzymfunktion könnten also gelingen, ohne Veränderungen am Enzym selbst durchzuführen, alleine dadurch, dass man sie in unterschiedlich dichte Nitrilase-Spiralen einzwängt.

Förderung

Die Arbeiten wurden gefördert durch die Deutsche Forschungsgemeinschaft (DFG), die National Research Foundation of South Africa, sowie den DFG-Open-Access-Publikationsfonds der Ruhr-Universität Bochum.

Dr. Markus Piotrowski
Lehrstuhl für Molekulargenetik und Physiologie der Pflanzen
Fakultät für Biologie und Biotechnologie
Ruhr-Universität Bochum
Tel.: 0234 32 24290
E-Mail: markus.piotrowski@rub.de

Jeremy D. Woodward, Inga Trompetter, B. Trevor Sewell, Markus Piotrowski: Substrate specificity of plant nitrilase complexes is affected by their helical twist, in: Communications Biology, 2018, DOI: 10.1038/s42003-018-0186-4

https://www.nature.com/articles/s42003-018-0186-4 – Link zum Originalpaper

Media Contact

Meike Drießen idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer