Wenn Wasser zum Zerreißen gespannt ist

Momentaufnahme einer Simulation von Blasenbildung in Wasser unter Zugspannung. Durch das Wachsen einer Dampfblase (gelb) in Wasser (rot-weiß) geht das System von der flüssigen Phase in den Dampf über. Copyright: Georg Menzl, Universität Wien

Ein Nebeneffekt der Photosynthese von Pflanzen ist die Verdunstung von Wasser über die Blätter. Um den dadurch entstehenden Flüssigkeitsverlust auszugleichen, wird Wasser durch Unterdruck über dünne Kanäle vom Boden nach oben gezogen. Wasser kann unter solcher Zugbelastung, also unter negativem Druck, über lange Zeiten stabil bleiben, da die Anziehung zwischen den Molekülen, den kleinsten „Bausteinen“ der Flüssigkeit, dem Zug entgegenwirkt.

Jedoch ist diese Stabilität unter Spannung immer zeitlich beschränkt: Nach einiger Zeit „unter Zug“ geht Wasser von der flüssigen Phase in Dampf über. Im Zuge dieses Übergangs bilden sich mikroskopische Dampfblasen, welche so lange wachsen, bis die Flüssigkeit letztendlich unter der angelegten Spannung „reißt“.

Experimente liefern widersprüchliche Resultate

Sowohl die Stabilität von Wasser unter Zugbelastung als auch der Prozess der Blasenbildung selbst, die sogenannte Kavitation, sind von entscheidender Bedeutung für biologische Systeme und technische Anwendungen. Beispielsweise nützen Farne den abrupten Spannungsabfall durch Kavitation, um ihre Sporen wie ein Katapult wegzuschleudern. Kollabierende Dampfblasen können zum Beispiel an Schiffsschrauben oder Turbinenschaufeln zu Materialschäden führen.

Aufgrund dieser praktischen Relevanz wird die Zugstabilität von Wasser seit über 300 Jahren experimentell untersucht. Unterschiedliche Messmethoden liefern jedoch stark voneinander abweichende Resultate für die Zugstabilität von Wasser – ein starkes Indiz für unbekannte Effekte bei der Messung, meint Christoph Dellago: „Da der Kavitationsprozess explosionsartig schnell abläuft und die entscheidenden Aspekte der Blasenbildung stattfinden, solange die Blasen sehr klein sind, ist eine Methode nötig, um Blasenbildung in Wasser mit molekularer Auflösung zu analysieren“.

Computersimulationen ermöglichen Analyse auf molekularer Ebene

Dieser Blick auf molekularer Ebene gelang einer internationalen Forschungskollaboration um Christoph Dellago an der Fakultät für Physik der Universität Wien mit Hilfe von Computersimulationen. Diese aufwändigen Simulationen, die von Georg Menzl und Philipp Geiger am Hochleistungsrechner Vienna Scientific Cluster (VSC) durchgeführt wurden, erlauben eine Analyse der Blasenbildung mit enorm hoher räumlicher und zeitlicher Auflösung. „In der Computersimulation können wir viele mögliche Fehlerquellen ausschließen, die potenziell zu Abweichungen in den experimentellen Resultaten führen“, erklären die Wissenschafter.

Mithilfe dieser Simulationen entwickelten die Physiker der Universität Wien zusammen mit ForscherInnen aus Madrid und Lyon eine mikroskopische Theorie, die das Auftreten von Kavitation in Wasser abhängig von der angelegten Spannung quantitativ vorhersagt und zeigt, dass Wasser unter Zug stabiler ist als von vielen Experimenten vorhergesagt. „Eine Erkenntnis, die erst durch Computersimulationen möglich wurde, in denen selbst winzigste Blasen genau beobachtet werden konnten“, so Christoph Dellago.

Publikation in „PNAS“:
Georg Menzl, Miguel A. Gonzalez, Philipp Geiger, Frédéric Caupin, Jose L. F. Abascal, Chantal Valeriani, Christoph Dellago: Molecular mechanism for cavitation in water under tension, in PNAS 2016 (erscheint online am 2.11.2016)
DOI 10.1073/pnas.1608421113

Wissenschaftlicher Kontakt
Univ.-Prof. Mag. Dr. Christoph Dellago
Computergestützte Physik
Universität Wien
1090 Wien, Sensengasse 8
T +43-1-4277-512 60
M +43-664-602 77-512 60
christoph.dellago@univie.ac.at

Rückfragehinweis
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey@univie.ac.at

Offen für Neues. Seit 1365
Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 15 Fakultäten und vier Zentren arbeiten rund 9.700 MitarbeiterInnen, davon 6.800 WissenschafterInnen. Die Universität Wien ist damit auch die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 94.000 nationale und internationale Studierende inskribiert. Mit über 175 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. http://www.univie.ac.at

Media Contact

Stephan Brodicky Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Funktionsweise von Adrenalin-bindendem Rezeptor entschlüsselt

Leipziger Biophysiker verfolgen Mechanismus der Signalübertragung im Körper nach. G-Protein-gekoppelte Rezeptoren (GPCR) sind im menschlichen Körper allgegenwärtig und an vielen komplexen Signalwegen beteiligt. Trotz ihrer Bedeutung für zahlreiche biologische Vorgänge…

Eine Alternative für die Manipulation von Quantenzuständen

Forschende der ETH Zürich haben gezeigt, dass man die Quantenzustände einzelner Elektronenspins durch Elektronenströme mit gleichmässig ausgerichteten Spins kontrollieren kann. Diese Methode könnte in Zukunft in elektronischen Schaltelementen eingesetzt werden….

Neue Einblicke in das Entstehen kleinster Wolkenpartikel in der Arktis

Ny-Ålesund (Spitzbergen). Mobile Messgeräte ermöglichen die Untersuchung von atmosphärischen Prozessen in höheren Luftschichten, die von klassischen Messstationen am Boden bisher nicht erfasst werden. Die luftgetragenen Flugsysteme leisten somit einen wichtigen…

Partner & Förderer